Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Physiol ; 190(3): 1978-1996, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35900211

RESUMO

Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Flagelina/farmacologia , Flagelina/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pseudomonas syringae/fisiologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases
2.
Mol Plant Microbe Interact ; 35(2): 119-124, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34669427

RESUMO

Aphids, the phloem sap feeders, probe into leaf tissues and activate a complex network of plant defense responses. Phytohormonal signaling plays a major role in this network; however, the dynamics of the signal spreading is yet to be clarified. Despite the growing knowledge about transcriptomic changes upon infestation, results often differ due to sampling, varying strongly between the tissues collected at the single feeding site, individual leaves, pooled infested leaves, or whole plant rosettes. This study focuses on activation of salicylic acid (SA) and jasmonic acid (JA) signals in Arabidopsis leaves during infestation by cabbage aphid (Brevicoryne brassicae) in high spatio-temporal resolution. We used genetically encoded fluorescent biosensors, histochemistry, and quantitative reverse transcription-PCR to precisely map activation of distinct branches of phytohormonal signaling. We found a rapid induction of SA and JA signaling markers in cells surrounding stylet puncture, colocalizing with callose deposition. For both PR1 and JAZ10, we detected activation at 24 h postinfestation (hpi), increasing and spreading along the veins until 72 hpi and, to a lesser extent, within the epidermal pavement cells. The SA signaling wave appeared in parallel with JA-associated signaling and continued to increase in time. Our results first show a local activation of SA- and JA-related responses after stylet penetration of Arabidopsis leaves and bring a detailed insight into the spatio-temporal complexity of plant defense activation during specialist aphid attack.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Afídeos , Proteínas de Arabidopsis , Arabidopsis , Animais , Afídeos/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Ácido Salicílico
3.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808421

RESUMO

Brassinosteroids (BRs) are plant hormones of steroid nature, regulating various developmental and adaptive processes. The perception, transport, and signaling of BRs are actively studied nowadays via a wide range of biochemical and genetic tools. However, most of the knowledge about BRs intracellular localization and turnover relies on the visualization of the receptors or cellular compartments using dyes or fluorescent protein fusions. We have previously synthesized a conjugate of epibrassinolide with green fluorescent dye BODIPY (eBL-BODIPY). Here we present a detailed assessment of the compound bioactivity and its suitability as probe for in vivo visualization of BRs. We show that eBL-BODIPY rapidly penetrates epidermal cells of Arabidopsis thaliana roots and after long exposure causes physiological and transcriptomic responses similar to the natural hormone.


Assuntos
Compostos de Boro/química , Brassinosteroides/química , Corantes Fluorescentes/química , Esteroides Heterocíclicos/química , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
4.
Ann Bot ; 125(5): 775-784, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31250883

RESUMO

BACKGROUND AND AIMS: We have recently shown that an Arabidopsis thaliana double mutant of type III phosphatidylinositol-4-kinases (PI4Ks), pi4kß1ß2, constitutively accumulated a high level of salicylic acid (SA). By crossing this pi4kß1ß2 double mutant with mutants impaired in SA synthesis (such as sid2 impaired in isochorismate synthase) or transduction, we demonstrated that the high SA level was responsible for the dwarfism phenotype of the double mutant. Here we aimed to distinguish between the SA-dependent and SA-independent effects triggered by the deficiency in PI4Kß1 and PI4Kß2. METHODS: To achieve this we used the sid2pi4kß1ß2 triple mutant. High-throughput analyses of phytohormones were performed on this mutant together with pi4kß1ß2 and sid2 mutants and wild-type plants. Responses to pathogens, namely Hyaloperonospora arabidopsidis, Pseudomonas syringae and Botrytis cinerea, and also to the non-host fungus Blumeria graminis, were also determined. Callose accumulation was monitored in response to flagellin. KEY RESULTS: We show here the prominent role of high SA levels in influencing the concentration of many other tested phytohormones, including abscisic acid and its derivatives, the aspartate-conjugated form of indole-3-acetic acid and some cytokinins such as cis-zeatin. We show that the increased resistance of pi4kß1ß2 plants to the host pathogens H. arabidopsidis, P. syringae pv. tomato DC3000 and Bothrytis cinerea is dependent on accumulation of high SA levels. In contrast, accumulation of callose in pi4kß1ß2 after flagellin treatment was independent of SA. Concerning the response to Blumeria graminis, both callose accumulation and fungal penetration were enhanced in the pi4kß1ß2 double mutant compared to wild-type plants. Both of these processes occurred in an SA-independent manner. CONCLUSIONS: Our data extensively illustrate the influence of SA on other phytohormone levels. The sid2pi4kß1ß2 triple mutant revealed the role of PI4Kß1/ß2 per se, thus showing the importance of these enzymes in plant defence responses.


Assuntos
1-Fosfatidilinositol 4-Quinase , Proteínas de Arabidopsis/genética , Arabidopsis , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas , Pseudomonas syringae , Ácido Salicílico
5.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861218

RESUMO

The phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences. However, some genetic/metabolic variations can also result in SA overaccumulation in plants, even in basal conditions. To date, more than forty Arabidopsis thaliana mutants have been described as having enhanced endogenous SA levels or constitutively activated SA signalling pathways. In this study, we established a collection of mutants containing different SA levels due to diverse genetic modifications and distinct gene functions. We chose prototypic SA-overaccumulators (SA-OAs), such as bon1-1, but also "non-typical" ones such as exo70b1-1; the selection of OA is accompanied by their crosses with SA-deficient lines. Here, we extensively studied the plant development and SA level/signalling under various growth conditions in soil and in vitro, and showed a strong negative correlation between rosette size, SA content and PR1/ICS1 transcript signature. SA-OAs (namely cpr5, acd6, bon1-1, fah1/fah2 and pi4kß1ß2) had bigger rosettes under high light conditions, whereas WT plants did not. Our data provide new insights clarifying a link between SA and plant behaviour under environmental stresses. The presented SA mutant collection is thus a suitable tool to shed light on the mechanisms underlying trade-offs between growth and defence in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno , Desenvolvimento Vegetal/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética
6.
Biochem Biophys Res Commun ; 444(4): 520-4, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24472551

RESUMO

Antimicrobial decapeptide anoplin was tested for its antifungal activity against plant pathogen Leptosphaeria maculans and protection of Brassica napus plants from disease. To reveal the mode of action of the peptide, a natural form of anoplin amidated on C-terminus (ANP-NH2), and its carboxylated analog (ANP-OH) were used in the study. We demonstrated strong antifungal activity of anoplin in vitro regardless C-terminus modification. In addition we show that both ANP-NH2 and ANP-OH induce expression of defence genes in B. napus and protects plants from L. maculans infection. The results indicate that the amidation of anoplin is not essential for its antifungal and plant defence stimulating activities.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ascomicetos/efeitos dos fármacos , Brassica napus/microbiologia , Doenças das Plantas/prevenção & controle , Venenos de Vespas/farmacologia , Amidas/química , Amidas/farmacologia , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Brassica napus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Venenos de Vespas/química
7.
New Phytol ; 203(3): 805-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24758581

RESUMO

Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIß1ß2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIß1ß2 phenotype. The pi4kIIIß1ß2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIß1ß2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIß1ß2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIß1ß2, sid2 pi4kIIIß1ß2 and NahG pi4kIIIß1ß2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIß1ß2 had more SA than pi4kIIIß1ß2 despite being less dwarfed. This indicates that PI4KIIIß1 and PI4KIIIß2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIß1ß2 was not suppressed in any of the triple mutants. The pi4kIIIß1ß2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Mutação/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Cinética , Metabolismo dos Lipídeos/genética , Modelos Genéticos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Raízes de Plantas/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Pseudomonas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima/genética
8.
Pest Manag Sci ; 80(5): 2480-2494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436531

RESUMO

BACKGROUND: Multiple and simultaneous attacks by pathogens and insect pests frequently occur in nature. Plants respond to biotic stresses by activating distinct defense mechanisms, but little is known about how plants cope with multiple stresses. The focus of this study was the combined interaction of fungal infection caused by Leptosphaeria maculans (synonym Plenodomus lingam) and arthropod infestation by the diamondback moth (Plutella xylostella) in oilseed rape (Brassica napus). We hypothesized that infection by the fungal pathogen L. maculans could alter oilseed rape palatability to P. xylostella-chewing caterpillars. Feeding preference tests were complemented with analyses of defense gene transcription, and levels of glucosinolates (GLSs) and volatile organic compounds (VOCs) in L. maculans-inoculated and non-inoculated (control) leaves to determine possible causes of larval choice. RESULTS: Caterpillars preferred true leaves to cotyledons, hence true leaves were used for further experiments. True leaves inoculated with L. maculans were more palatable to caterpillars over control leaves during the early stage of infection at 3 days post inoculation (dpi), but this preference disappeared in the later stages of infection at 7 dpi. In parallel, genes involved in the salicylic acid and ethylene pathways were up-regulated in L. maculans-inoculated leaves at 3 and 7 dpi; L. maculans increased the level of total aliphatic GLSs, specifically glucobrassicanapin, and decreased the level of glucoiberin at 3 dpi and altered the content of specific VOCs. A group of 55 VOCs with the highest variability between treatments was identified. CONCLUSION: We suggest that the P. xylostella preference for L. maculans-inoculated leaves in the early stage of disease development could be caused by the underlying mechanisms leading to changes in metabolic composition. Further research should pinpoint the compounds responsible for driving larval preference and evaluate whether the behavior of the adult moths, i.e. the stage that makes the first choice regarding host plant selection in field conditions, correlates with our results on larval host acceptance. © 2024 Society of Chemical Industry.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Mariposas , Micoses , Animais , Ascomicetos/genética , Folhas de Planta/microbiologia , Larva , Doenças das Plantas/microbiologia
9.
J Agric Food Chem ; 72(11): 5609-5624, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467054

RESUMO

This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on Arabidopsis thaliana and Brassica napus. The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Although plasma treatment enhanced water absorption and modified surface chemistry, its impact on germination demonstrated species- and context-dependent variations. Notably, the accelerated germination and morphogenesis of seedlings in microbiome-enriched (MB+) soil could be achieved also in microbiome-deprived (MB-) soil by short-term plasma treatment of seeds. Remarkably, the positive effects of plasma treatment on early developmental events (germination, morphogenesis) and later events (formation of inflorescences) were more pronounced in the context of MB- soil but were accompanied by a slight decrease in disease resistance, which was not detected in MB+ soil. The results underscore the intricate dynamics of plasma-plant interactions and stress the significance of accounting for the soil microbiome while designing experiments with potential field application.


Assuntos
Arabidopsis , Germinação , Solo , Sementes , Plântula , Água/farmacologia
10.
Plant Cell Rep ; 32(6): 839-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23471417

RESUMO

Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Glicerofosfolipídeos/metabolismo , Ácidos Fosfatídicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Regulação da Expressão Gênica de Plantas , Fosfolipases/metabolismo , Fosfotransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas , Transcriptoma
11.
Front Microbiol ; 14: 1193892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692395

RESUMO

The largest family of transmembrane receptors are G-protein-coupled receptors (GPCRs). These receptors respond to perceived environmental signals and infect their host plants. Family A of the GPCR includes opsin. However, there is little known about the roles of GPCRs in phytopathogenic fungi. We studied opsin in Leptosphaeria maculans, an important pathogen of oilseed rape (Brassica napus) that causes blackleg disease, and compared it with six other fungal pathogens of oilseed rape. A phylogenetic tree analysis of 31 isoforms of the opsin protein showed six major groups and six subgroups. All three opsin isoforms of L. maculans are grouped in the same clade in the phylogenetic tree. Physicochemical analysis revealed that all studied opsin proteins are stable and hydrophobic. Subcellular localization revealed that most isoforms were localized in the endoplasmic reticulum membrane except for several isoforms in Verticillium species, which were localized in the mitochondrial membrane. Most isoforms comprise two conserved domains. One conserved motif was observed across all isoforms, consisting of the BACTERIAL_OPSIN_1 domain, which has been hypothesized to have an identical sensory function. Most studied isoforms showed seven transmembrane helices, except for one isoform of V. longisporum and four isoforms of Fusarium oxysporum. Tertiary structure prediction displayed a conformational change in four isoforms of F. oxysporum that presumed differences in binding to other proteins and sensing signals, thereby resulting in various pathogenicity strategies. Protein-protein interactions and binding site analyses demonstrated a variety of numbers of ligands and pockets across all isoforms, ranging between 0 and 13 ligands and 4 and 10 pockets. According to the phylogenetic analysis in this study and considerable physiochemically and structurally differences of opsin proteins among all studied fungi hypothesized that this protein acts in the pathogenicity, growth, sporulation, and mating of these fungi differently.

12.
AoB Plants ; 15(2): plad004, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36970187

RESUMO

The technological exploitation of palladium or palladium nanoparticles (PdNPs) is increasing, and their wider usage relates to an unwanted release of pollutants into the environment, raising public health concerns about the infiltration of palladium into the consumption chain. This study focuses on the effect of spherical gold-cored PdNPs of 50 ± 10 nm diameter stabilized by sodium citrate on the interaction between an oilseed rape (Brassica napus) and the fungal pathogen Plenodomus lingam. Pretreatment of B. napus cotyledons with PdNPs suspension 24 h before but not 24 h after inoculation with P. lingam resulted in a decrease in the extent of disease symptoms; however, this effect was caused by Pd2+ ions (35 mg l-1 or 70 mg l-1). Tests to determine any direct antifungal activity on P. lingam in vitro demonstrated that the residual Pd2+ ions present in the PdNP suspension were responsible for the antifungal activity and that PdNPs themselves do not contribute to this effect. Brassica napus plants did not show any symptoms of palladium toxicity in any form. PdNPs/Pd2+ slightly increased the chlorophyll content and the transcription of pathogenesis-related gene 1 (PR1), indicating the activation of the plant defence system. We conclude that the only toxic effect of the PdNP suspension was on P. lingam via ions and that PdNPs/Pd2+ did not have any deleterious effect on the B. napus plants.

13.
Mol Plant Microbe Interact ; 25(9): 1238-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22624662

RESUMO

Interaction of a plant with a fungal pathogen is an encounter with hundreds of molecules. In contrast to this, a single molecule often decides between the disease and resistance. In the present article, we describe the defense responses triggered by AvrLm1, an avirulence gene from a hemibiotrophic ascomycete, Leptosphaeria maculans, responsible for an incompatible interaction with Brassica napus. Using multiple hormone quantification and expression analysis of defense-related genes, we investigated signaling events in Rlm1 plants infected with two sister isolates of L. maculans differentiated by the presence or absence of AvrLm1. Infection with the isolate carrying AvrLm1 increased the biosynthesis of salicylic acid (SA) and induced expression of the SA-associated genes ICS1, WRKY70, and PR-1, a feature characteristic of responses to biotrophic pathogens and resistance gene-mediated resistance. In addition to SA-signaling elements, we also observed the induction of ASC2a, HEL, and CHI genes associated with ethylene (ET) signaling. Pharmacological experiments confirmed the positive roles of SA and ET in mediating resistance to L. maculans. The unusual cooperation of SA and ET signaling might be a response to the hemibiotrophic nature of L. maculans. Our results also demonstrate the profound difference between the natural host B. napus and the model plant Arabidopsis in their response to L. maculans infection.


Assuntos
Ascomicetos/metabolismo , Brassica napus/microbiologia , Etilenos/metabolismo , Proteínas Fúngicas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Proteínas Fúngicas/farmacologia , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Fatores de Tempo
14.
Front Microbiol ; 13: 853593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547140

RESUMO

Pseudomonas syringae is a bacterial pathogen that causes yield losses in various economically important plant species. At the same time, P. syringae pv. tomato (Pst) is one of the best-studied bacterial phytopathogens and a popular model organism. In this study, we report on the isolation of two phages from the market-bought pepper fruit showing symptoms of bacterial speck. These Pseudomonas phages were named Eir4 and Eisa9 and characterized using traditional microbiological methods and whole-genome sequencing followed by various bioinformatics approaches. Both of the isolated phages were capable only of the lytic life cycle and were efficient against several pathovars from Pseudomonas and Xanthomonas genera. With the combination of transmission electron microscopy (TEM) virion morphology inspection and comparative genomics analyses, both of the phages were classified as members of the Autographiviridae family with different degrees of novelty within the known phage diversity. Eir4, but not Eisa9, phage application significantly decreased the propagation of Pst in the leaf tissues of Arabidopsis thaliana plants. The biological properties of Eir4 phage allow us to propose it as a potential biocontrol agent for use in the prevention of Pst-associated bacterioses and also as a model organism for the future research of mechanisms of phage-host interactions in different plant systems.

15.
Biotechnol Adv ; 58: 107929, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35189273

RESUMO

Within the past decades, nanoparticles (NPs) have become common components of electronics, batteries, cosmetics, clothing, and even dietary supplements. Despite their undisputed advantages consisting in the possibility of engineering their novel physical, thermal, optical, and biological properties, safety questions arise concerning their wide exploitation. NPs interact with living organisms, which can interfere with essential life processes. The aim of this paper is to critically review the current literature dealing with noble metals' NPs (NM-NPs) and their effects on plants and associated microorganisms. Particular attention has been given to the less studied NPs of platinum group elements, which can be considered a neglected pollutant, since they are released from vehicles' catalysts. In addition, we have provided a comprehensive overview of the biotechnology exploitation of NM-NPs in plant cultivation, where prospective nanomaterials developed as nanofertilizers and nanopesticides are introduced, and both the pros and the cons of nanomaterial plant treatments have been discussed.


Assuntos
Nanopartículas Metálicas , Agricultura , Biotecnologia , Plantas , Estudos Prospectivos
16.
Front Plant Sci ; 13: 893858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668790

RESUMO

Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.

17.
Sci Rep ; 12(1): 6947, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484296

RESUMO

Phosphatidylinositol 4-kinases (PI4Ks) are the first enzymes that commit phosphatidylinositol into the phosphoinositide pathway. Here, we show that Arabidopsis thaliana seedlings deficient in PI4Kß1 and ß2 have several developmental defects including shorter roots and unfinished cytokinesis. The pi4kß1ß2 double mutant was insensitive to exogenous auxin concerning inhibition of root length and cell elongation; it also responded more slowly to gravistimulation. The pi4kß1ß2 root transcriptome displayed some similarities to a wild type plant response to auxin. Yet, not all the genes displayed such a constitutive auxin-like response. Besides, most assessed genes did not respond to exogenous auxin. This is consistent with data with the transcriptional reporter DR5-GUS. The content of bioactive auxin in the pi4kß1ß2 roots was similar to that in wild-type ones. Yet, an enhanced auxin-conjugating activity was detected and the auxin level reporter DII-VENUS did not respond to exogenous auxin in pi4kß1ß2 mutant. The mutant exhibited altered subcellular trafficking behavior including the trapping of PIN-FORMED 2 protein in rapidly moving vesicles. Bigger and less fragmented vacuoles were observed in pi4kß1ß2 roots when compared to the wild type. Furthermore, the actin filament web of the pi4kß1ß2 double mutant was less dense than in wild-type seedling roots, and less prone to rebuilding after treatment with latrunculin B. A mechanistic model is proposed in which an altered PI4K activity leads to actin filament disorganization, changes in vesicle trafficking, and altered auxin homeostasis and response resulting in a pleiotropic root phenotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos de Fosfatidilinositol , Fosfatidilinositóis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
18.
Res Microbiol ; 171(5-6): 174-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32540203

RESUMO

Auxins are hormones that regulate growth and development in plants. Besides plants, various microorganisms also produce auxins. Here we investigate whether and how the phytopathogenic fungus Leptosphaeria maculans biosynthesizes auxins. We characterized the auxin profile of in vitro grown L. maculans. The culture was further supplied with the auxin biosynthetic-precursors tryptophan and tryptamine and gene expression and phytohormone content was analyzed. L. maculans in vitro produced IAA (indole-3-acetic acid) as the predominant auxin metabolite. IAA production could be further stimulated by supplying precursors. Expression of indole-3-pyruvate decarboxylase LmIPDC2, tryptophan aminotransferase LmTAM1 and nitrilase LmNIT1 genes was mainly upregulated after adding tryptophan and correlated with IAA production, suggesting that these genes are the key components of auxin biosynthesis in L. maculans. Tryptamine acted as a potent inducer of IAA production, though a pathway independent of LmIPDC2/LmTAM1 may be involved. Despite L. maculans being a rich source of bioactive IAA, the auxin metabolic profile of host plant Brassica napus was not altered upon infection. Exogenous IAA inhibited the growth of L. maculans in vitro when supplied in high concentration. Altogether, we showed that L. maculans is capable of IAA production and we have identified biosynthetic genes that were responsive to tryptophan treatment.


Assuntos
Carboxiliases/genética , Ácidos Indolacéticos/metabolismo , Leptosphaeria/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Triptofano Transaminase/genética , Aminoidrolases/genética , Vias Biossintéticas , Brassica napus/microbiologia , Carboxiliases/metabolismo , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Regulação Fúngica da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Leptosphaeria/enzimologia , Leptosphaeria/genética , Leptosphaeria/crescimento & desenvolvimento , Filogenia , Transcrição Gênica , Triptaminas/metabolismo , Triptaminas/farmacologia , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano Transaminase/metabolismo , Regulação para Cima
19.
Mol Plant Pathol ; 20(7): 1005-1012, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924595

RESUMO

Recognition of pathogen-associated molecular patterns (PAMPs) is crucial for plant defence against pathogen attack. The best characterized PAMP is flg22, a 22 amino acid conserved peptide from flagellin protein. In Arabidopsis thaliana, flg22 is recognized by the flagellin sensing 2 (FLS2) receptor. In this study, we focused on biotic stress responses triggered by flg22 after exposure to temporary heat stress (HS). It is important to study the reactions of plants to multiple stress conditions because plants are often exposed simultaneously to a combination of both abiotic and biotic stresses. Transient early production of reactive oxygen species (ROS) is a well-characterized response to PAMP recognition. We demonstrate the strong reduction of flg22-induced ROS production in A. thaliana after HS treatment. In addition, a decrease in FLS2 transcription and a decrease of the FLS2 presence at the plasma membrane are shown after HS. In summary, our data show the strong inhibitory effect of HS on flg22-triggered events in A. thaliana. Subsequently, temporary HS strongly decreases the resistance of A. thaliana to Pseudomonas syringae. We propose that short exposure to high temperature is a crucial abiotic stress factor that suppresses PAMP-triggered immunity, which subsequently leads to the higher susceptibility of plants to pathogens.


Assuntos
Alarminas/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença/imunologia , Resposta ao Choque Térmico , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Pseudomonas syringae/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
20.
Front Plant Sci ; 10: 1448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850004

RESUMO

Being natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant-pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC50) values. Among those saponins tested, aescin showed itself to be the strongest antifungal agent. The antifungal effect of aescin could be reversed by ergosterol, thus suggesting that aescin interferes with fungal sterols. We tested the effect of aescin on plant-pathogen interaction in two different pathosystems: Brassica napus versus (fungus) Leptosphaeria maculans and Arabidopsis thaliana versus (bacterium) Pseudomonas syringae pv tomato DC3000 (Pst DC3000). We analyzed resistance assays, defense gene transcription, phytohormonal production, and reactive oxygen species production. Aescin activated B. napus defense through induction of the salicylic acid pathway and oxidative burst. This defense response led finally to highly efficient plant protection against L. maculans that was comparable to the effect of fungicides. Aescin also inhibited colonization of A. thaliana by Pst DC3000, the effect being based on active elicitation of salicylic acid (SA)-dependent immune mechanisms and without any direct antibacterial effect detected. Therefore, this study brings the first report on the ability of saponins to trigger plant immune responses. Taken together, aescin in addition to its antifungal properties activates plant immunity in two different plant species and provides SA-dependent resistance against both fungal and bacterial pathogens.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa