Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 48, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977677

RESUMO

The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.

2.
Vaccines (Basel) ; 9(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34579262

RESUMO

Group A Streptococcus (GAS) is an important global human pathogen, with a wide range of disease presentations, from mild mucosal infections like pharyngitis to invasive diseases such as toxic shock syndrome. The effect on health and mortality from GAS infections is substantial worldwide, particularly from autoimmune sequelae-like rheumatic heart disease (RHD), and there is currently no licenced vaccine. We investigated protein antigens targeting a broad range of GAS disease presentations as vaccine components in individual and combination formulations. The potency and functional immunity generated were evaluated and compared between groups. Antibodies against all components were found in pooled human IgG (IVIG) and an immune response generated following the subcutaneous immunisation of mice. A combination immunisation showed a reduction in IgG response for SpyCEP but an increase for Cpa and Mac-1 (IdeS). An opsonophagocytosis assay (OPA) showed the killing of GAS with immune sera against M protein and combination groups, with a lower killing activity observed for immune sera against other individual antigens. Specific antigen assays showed functional immunity against SpyCEP and Mac-1 from both individual and combination immunisations, with the activity correlating with antibody titres. However, efficient blocking of the binding activity of Cpa to collagen I and fibronectin could not be demonstrated with immune sera or purified IgG. Our data indicate that combination immunisations, while effective at covering a broader range of virulence factors, can also affect the immune response generated. Further, our results showed that an OPA alone is inadequate for understanding protection from vaccination, particularly when considering protection from immune evasion factors and evaluation of the colonisation leading to pharyngitis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa