Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 17, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273288

RESUMO

BACKGROUND: Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex. RESULTS: We tested eight reference panels containing different combinations of neuronal- and glial cell types and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empirically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain deconvolution models produce accurate estimates of cellular proportions from profiles generated on postnatal human cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal cells in the human cortex and identify significant associations between increased Alzheimer's disease neuropathology and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of NeuNNeg/SOX10Pos nuclei. CONCLUSIONS: Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. These models are available as a resource to the community enabling the control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk cortex tissue.


Assuntos
Metilação de DNA , Epigênese Genética , Feminino , Gravidez , Recém-Nascido , Humanos , Neuroglia , Córtex Cerebral , Neurônios/metabolismo
2.
BMC Genomics ; 25(1): 553, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831310

RESUMO

Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.


Assuntos
Metilação de DNA , Pâncreas , Humanos , Pâncreas/metabolismo , Pâncreas/embriologia , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Ilhas de CpG , Epigênese Genética , Genoma Humano , Feto/metabolismo
3.
Mol Psychiatry ; 28(5): 2095-2106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062770

RESUMO

ABTRACT: Studies conducted in psychotic disorders have shown that DNA-methylation (DNAm) is sensitive to the impact of Childhood Adversity (CA). However, whether it mediates the association between CA and psychosis is yet to be explored. Epigenome wide association studies (EWAS) using the Illumina Infinium-Methylation EPIC array in peripheral blood tissue from 366 First-episode of psychosis and 517 healthy controls was performed. Adversity scores were created for abuse, neglect and composite adversity with the Childhood Trauma Questionnaire (CTQ). Regressions examining (I) CTQ scores with psychosis; (II) with DNAm EWAS level and (III) between DNAm and caseness, adjusted for a variety of confounders were conducted. Divide-Aggregate Composite-null Test for the composite null-hypothesis of no mediation effect was conducted. Enrichment analyses were conducted with missMethyl package and the KEGG database. Our results show that CA was associated with psychosis (Composite: OR = 1.68; p = <0.001; abuse: OR = 2.16; p < 0.001; neglect: OR = 2.27; p = <0.001). None of the CpG sites significantly mediated the adversity-psychosis association after Bonferroni correction (p < 8.1 × 10-8). However, 28, 34 and 29 differentially methylated probes associated with 21, 27, 20 genes passed a less stringent discovery threshold (p < 5 × 10-5) for composite, abuse and neglect respectively, with a lack of overlap between abuse and neglect. These included genes previously associated to psychosis in EWAS studies, such as PANK1, SPEG TBKBP1, TSNARE1 or H2R. Downstream gene ontology analyses did not reveal any biological pathways that survived false discovery rate correction. Although at a non-significant level, DNAm changes in genes previously associated with schizophrenia in EWAS studies may mediate the CA-psychosis association. These results and associated involved processes such as mitochondrial or histaminergic disfunction, immunity or neural signalling requires replication in well powered samples. The lack of overlap between mediating genes associated with abuse and neglect suggests differential biological trajectories linking CA subtypes and psychosis.


Assuntos
Experiências Adversas da Infância , Testes Psicológicos , Transtornos Psicóticos , Autorrelato , Humanos , Criança , Metilação de DNA/genética , Epigenoma , Transtornos Psicóticos/genética
4.
PLoS Genet ; 17(3): e1009443, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739972

RESUMO

Most epigenome-wide association studies (EWAS) quantify DNA methylation (DNAm) in peripheral tissues such as whole blood to identify positions in the genome where variation is statistically associated with a trait or exposure. As whole blood comprises a mix of cell types, it is unclear whether trait-associated DNAm variation is specific to an individual cellular population. We collected three peripheral tissues (whole blood, buccal epithelial and nasal epithelial cells) from thirty individuals. Whole blood samples were subsequently processed using fluorescence-activated cell sorting (FACS) to purify five constituent cell-types (monocytes, granulocytes, CD4+ T cells, CD8+ T cells, and B cells). DNAm was profiled in all eight sample-types from each individual using the Illumina EPIC array. We identified significant differences in both the level and variability of DNAm between different sample types, and DNAm data-derived estimates of age and smoking were found to differ dramatically across sample types from the same individual. We found that for the majority of loci variation in DNAm in individual blood cell types was only weakly predictive of variance in DNAm measured in whole blood, although the proportion of variance explained was greater than that explained by either buccal or nasal epithelial samples. Covariation across sample types was much higher for DNAm sites influenced by genetic factors. Overall, we observe that DNAm variation in whole blood is additively influenced by a combination of the major blood cell types. For a subset of sites, however, variable DNAm detected in whole blood can be attributed to variation in a single blood cell type providing potential mechanistic insight about EWAS findings. Our results suggest that associations between whole blood DNAm and traits or exposures reflect differences in multiple cell types and our data will facilitate the interpretation of findings in epigenetic epidemiology.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica , Epidemiologia Molecular , Células Sanguíneas , Epigenômica/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Especificidade de Órgãos/genética , Transcriptoma
5.
J Child Psychol Psychiatry ; 64(7): 998-1006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929374

RESUMO

BACKGROUND: Human aggression is influenced by an interplay between genetic predisposition and experience across the life span. This interaction is thought to occur through epigenetic mechanisms, inducing differential gene expression, thereby moderating neuronal cell and circuit function, and thus shaping aggressive behaviour. METHODS: Genome-wide DNA methylation (DNAm) levels were measured in peripheral blood obtained from 95 individuals participating in the Estonian Children Personality Behaviours and Health Study (ECPBHS) at 15 and 25 years of age. We examined the association between aggressive behaviour, as measured by Life History of Aggression (LHA) total score and DNAm levels both assessed at age 25. We further examined the pleiotropic effect of genetic variants regulating LHA-associated differentially methylated positions (DMPs) and multiple traits related to aggressive behaviours. Lastly, we tested whether the DNA methylomic loci identified in association with LHA at age 25 were also present at age 15. RESULTS: We found one differentially methylated position (DMP) (cg17815886; p = 1.12 × 10-8 ) and five differentially methylated regions (DMRs) associated with LHA after multiple testing adjustments. The DMP annotated to the PDLIM5 gene, and DMRs resided in the vicinity of four protein-encoding genes (TRIM10, GTF2H4, SLC45A4, B3GALT4) and a long intergenic non-coding RNA (LINC02068). We observed evidence for the colocalization of genetic variants associated with top DMPs and general cognitive function, educational attainment and cholesterol levels. Notably, a subset of the DMPs associated with LHA at age 25 also displayed altered DNAm patterns at age 15 with high accuracy in predicting aggression. CONCLUSIONS: Our findings highlight the potential role of DNAm in the development of aggressive behaviours. We observed pleiotropic genetic variants associated with identified DMPs, and various traits previously established to be relevant in shaping aggression in humans. The concordance of DNAm signatures in adolescents and young adults may have predictive value for inappropriate and maladaptive aggression later in life.


Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Criança , Adolescente , Adulto Jovem , Humanos , Adulto , Metilação de DNA/genética , Epigênese Genética , Predisposição Genética para Doença , Agressão
6.
Am J Med Genet B Neuropsychiatr Genet ; 189(5): 151-162, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35719055

RESUMO

Genome-wide association studies (GWAS) have identified multiple genomic regions associated with schizophrenia, although many variants reside in noncoding regions characterized by high linkage disequilibrium (LD) making the elucidation of molecular mechanisms challenging. A genomic region on chromosome 10q24 has been consistently associated with schizophrenia with risk attributed to the AS3MT gene. Although AS3MT is hypothesized to play a role in neuronal development and differentiation, work to fully understand the function of this gene has been limited. In this study we explored the function of AS3MT using a neuronal cell line (SH-SY5Y). We confirm previous findings of isoform specific expression of AS3MT during SH-SY5Y differentiation toward neuronal fates. Using CRISPR-Cas9 gene editing we generated AS3MT knockout SH-SY5Y cell lines and used RNA-seq to identify significant changes in gene expression in pathways associated with neuronal development, inflammation, extracellular matrix formation, and RNA processing, including dysregulation of other genes strongly implicated in schizophrenia. We did not observe any morphological changes in cell size and neurite length following neuronal differentiation and MAP2 immunocytochemistry. These results provide novel insights into the potential role of AS3MT in brain development and identify pathways through which genetic variation in this region may confer risk for schizophrenia.


Assuntos
Neuroblastoma , Esquizofrenia , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Metiltransferases/genética , Neurogênese/genética , Esquizofrenia/genética
7.
Am J Hum Genet ; 103(5): 654-665, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401456

RESUMO

Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation has the potential to increase understanding about the mechanisms underpinning health and disease phenotypes. We undertook a comprehensive analysis of common genetic variation on DNA methylation (DNAm) by using the Illumina EPIC array to profile samples from the UK Household Longitudinal study. We identified 12,689,548 significant DNA methylation quantitative trait loci (mQTL) associations (p < 6.52 × 10-14) occurring between 2,907,234 genetic variants and 93,268 DNAm sites, including a large number not identified by previous DNAm-profiling methods. We demonstrate the utility of these data for interpreting the functional consequences of common genetic variation associated with > 60 human traits by using summary-data-based Mendelian randomization (SMR) to identify 1,662 pleiotropic associations between 36 complex traits and 1,246 DNAm sites. We also use SMR to characterize the relationship between DNAm and gene expression and thereby identify 6,798 pleiotropic associations between 5,420 DNAm sites and the transcription of 1,702 genes. Our mQTL database and SMR results are available via a searchable online database as a resource to the research community.


Assuntos
Metilação de DNA/genética , DNA/genética , Epigênese Genética/genética , Expressão Gênica/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Estudos Longitudinais , Fenótipo , Característica Quantitativa Herdável , Transcrição Gênica/genética
8.
Brain ; 143(12): 3763-3775, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300551

RESUMO

Human DNA methylation data have been used to develop biomarkers of ageing, referred to as 'epigenetic clocks', which have been widely used to identify differences between chronological age and biological age in health and disease including neurodegeneration, dementia and other brain phenotypes. Existing DNA methylation clocks have been shown to be highly accurate in blood but are less precise when used in older samples or in tissue types not included in training the model, including brain. We aimed to develop a novel epigenetic clock that performs optimally in human cortex tissue and has the potential to identify phenotypes associated with biological ageing in the brain. We generated an extensive dataset of human cortex DNA methylation data spanning the life course (n = 1397, ages = 1 to 108 years). This dataset was split into 'training' and 'testing' samples (training: n = 1047; testing: n = 350). DNA methylation age estimators were derived using a transformed version of chronological age on DNA methylation at specific sites using elastic net regression, a supervised machine learning method. The cortical clock was subsequently validated in a novel independent human cortex dataset (n = 1221, ages = 41 to 104 years) and tested for specificity in a large whole blood dataset (n = 1175, ages = 28 to 98 years). We identified a set of 347 DNA methylation sites that, in combination, optimally predict age in the human cortex. The sum of DNA methylation levels at these sites weighted by their regression coefficients provide the cortical DNA methylation clock age estimate. The novel clock dramatically outperformed previously reported clocks in additional cortical datasets. Our findings suggest that previous associations between predicted DNA methylation age and neurodegenerative phenotypes might represent false positives resulting from clocks not robustly calibrated to the tissue being tested and for phenotypes that become manifest in older ages. The age distribution and tissue type of samples included in training datasets need to be considered when building and applying epigenetic clock algorithms to human epidemiological or disease cohorts.


Assuntos
Envelhecimento/genética , Relógios Biológicos/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Epigênese Genética/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Contagem de Células , Córtex Cerebral/citologia , Criança , Pré-Escolar , DNA/genética , Metilação de DNA , Bases de Dados Factuais , Feminino , Humanos , Lactente , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologia , Fenótipo , Reprodutibilidade dos Testes , Caracteres Sexuais , Adulto Jovem
9.
PLoS Genet ; 14(8): e1007544, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091980

RESUMO

Variation in DNA methylation is being increasingly associated with health and disease outcomes. Although DNA methylation is hypothesized to be a mechanism by which both genetic and non-genetic factors can influence the regulation of gene expression, little is known about the extent to which DNA methylation at specific sites is influenced by heritable as well as environmental factors. We quantified DNA methylation in whole blood at age 18 in a birth cohort of 1,464 individuals comprising 426 monozygotic (MZ) and 306 same-sex dizygotic (DZ) twin pairs. Site-specific levels of DNA methylation were more strongly correlated across the genome between MZ than DZ twins. Structural equation models revealed that although the average contribution of additive genetic influences on DNA methylation across the genome was relatively low, it was notably elevated at the highly variable sites characterized by intermediate levels of DNAm that are most relevant for epigenetic epidemiology. Sites at which variable DNA methylation was most influenced by genetic factors were significantly enriched for DNA methylation quantitative trait loci (mQTL) effects, and overlapped with sites where inter-individual variation correlates across tissues. Finally, we show that DNA methylation at sites robustly associated with environmental exposures such as tobacco smoking and obesity is also influenced by additive genetic effects, highlighting the need to control for genetic background in analyses of exposure-associated DNA methylation differences. Estimates of the contribution of genetic and environmental influences to DNA methylation at all sites profiled in this study are available as a resource for the research community (http://www.epigenomicslab.com/online-data-resources).


Assuntos
Metilação de DNA , Interação Gene-Ambiente , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adolescente , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Epigenômica , Feminino , Estudos de Associação Genética , Genoma Humano , Humanos , Modelos Lineares , Estudos Longitudinais , Masculino , Locos de Características Quantitativas , Fumar Tabaco/efeitos adversos
10.
Bioinformatics ; 35(6): 981-986, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875430

RESUMO

MOTIVATION: The datasets generated by DNA methylation analyses are getting bigger. With the release of the HumanMethylationEPIC micro-array and datasets containing thousands of samples, analyses of these large datasets using R are becoming impractical due to large memory requirements. As a result there is an increasing need for computationally efficient methodologies to perform meaningful analysis on high dimensional data. RESULTS: Here we introduce the bigmelon R package, which provides a memory efficient workflow that enables users to perform the complex, large scale analyses required in epigenome wide association studies (EWAS) without the need for large RAM. Building on top of the CoreArray Genomic Data Structure file format and libraries packaged in the gdsfmt package, we provide a practical workflow that facilitates the reading-in, preprocessing, quality control and statistical analysis of DNA methylation data.We demonstrate the capabilities of the bigmelon package using a large dataset consisting of 1193 human blood samples from the Understanding Society: UK Household Longitudinal Study, assayed on the EPIC micro-array platform. AVAILABILITY AND IMPLEMENTATION: The bigmelon package is available on Bioconductor (http://bioconductor.org/packages/bigmelon/). The Understanding Society dataset is available at https://www.understandingsociety.ac.uk/about/health/data upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Software , Genômica , Humanos , Estudos Longitudinais , Fluxo de Trabalho
11.
Am J Epidemiol ; 187(11): 2346-2354, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060108

RESUMO

Accelerated DNA methylation age is linked to all-cause mortality and environmental factors, but studies of associations with socioeconomic position are limited. Researchers generally use small selected samples, and it is unclear how findings obtained with 2 commonly used methods for calculating methylation age (the Horvath method and the Hannum method) translate to general population samples including younger and older adults. Among 1,099 United Kingdom adults aged 28-98 years in 2011-2012, we assessed the relationship of Horvath and Hannum DNA methylation age acceleration with a range of social position measures: current income and employment, education, income and unemployment across a 12-year period, and childhood social class. Accounting for confounders, participants who had been less advantaged in childhood were epigenetically "older" as adults: In comparison with participants who had professional/managerial parents, Hannum age was 1.07 years higher (95% confidence interval: 0.20, 1.94) for participants with parents in semiskilled/unskilled occupations and 1.85 years higher (95% confidence interval: 0.67, 3.02) for those without a working parent at age 14 years. No other robust associations were seen. Results accord with research implicating early life circumstances as critical for DNA methylation age in adulthood. Since methylation age acceleration as measured by the Horvath and Hannum estimators appears strongly linked to chronological age, researchers examining associations with the social environment must take steps to avoid age-related confounding.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA/fisiologia , Disparidades nos Níveis de Saúde , Fatores Socioeconômicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Reino Unido/epidemiologia
12.
Twin Res Hum Genet ; 18(6): 662-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26678051

RESUMO

Diurnal preference is an individual's preference for daily activities and sleep timing and is strongly correlated with the underlying circadian clock and the sleep-wake cycle validating its use as an indirect circadian measure in humans. Recent research has implicated DNA methylation as a mechanism involved in the regulation of the circadian clock system in humans and other mammals. In order to evaluate the extent of epigenetic differences associated with diurnal preference, we examined genome-wide patterns of DNA methylation in DNA from monozygotic (MZ) twin-pairs discordant for diurnal preference. MZ twins were selected from a longitudinal twin study designed to investigate the interplay of genetic and environmental factors in the development of emotional and behavioral difficulties. Fifteen pairs of MZ twins were identified in which one member scored considerably higher on the Horne-Ostberg Morningness-Eveningness Questionnaire (MEQ) than the other. Genome-wide DNA methylation patterns were assessed in twins' buccal cell DNA using the Illumina Infinium HumanMethylation450 BeadChips. Quality control and data pre-processing was undertaken using the wateRmelon package. Differentially methylated probes (DMPs) were identified using an analysis strategy taking into account both the significance and the magnitude of DNA methylation differences. Our data indicate that DNA methylation differences are detectable in MZ twins discordant for diurnal preference. Moreover, downstream gene ontology (GO) enrichment analysis on the top-ranked diurnal preference associated DMPs revealed significant enrichment of pathways that have been previously associated with circadian rhythm regulation, including cell adhesion processes and calcium ion binding.


Assuntos
Ritmo Circadiano/genética , Metilação de DNA , Epigênese Genética , Gêmeos Monozigóticos/genética , Adolescente , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Adulto Jovem
14.
J Cell Sci ; 125(Pt 22): 5524-34, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22946062

RESUMO

LSH, a protein related to the SNF2 family of chromatin-remodelling ATPases, is essential for the correct establishment of DNA methylation levels and patterns in plants and mammalian cells. However, some of the phenotypes resulting from LSH deficiency cannot be explained easily by defects in DNA methylation. Here we show that LSH-deficient mouse and human fibroblasts show reduced viability after exposure to ionizing radiation and repair DNA double-strand breaks less efficiently than wild-type cells. A more detailed characterisation of this phenotype revealed that, in the absence of LSH, the histone variant H2AX is not efficiently phosphorylated in response to DNA damage. This results in impaired recruitment of MDC1 and 53BP1 proteins to DNA double-strand breaks and compromises phosphorylation of checkpoint kinase CHK2. Furthermore, we demonstrate that the ability of LSH to hydrolyse ATP is necessary for efficient phosphorylation of H2AX at DNA double-strand breaks and successful repair of DNA damage. Taken together, our data reveal a previously unsuspected role of LSH ATPase in the maintenance of genome stability in mammalian somatic cells, which is independent of its function in de novo DNA methylation during development.


Assuntos
Adenosina Trifosfatases/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Quinase do Ponto de Checagem 2 , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Helicases/deficiência , Metilação de DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Ativação Enzimática/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Mamíferos/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Fosforilação/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Transdução de Sinais/efeitos da radiação
15.
Genome Res ; 21(1): 83-94, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21149390

RESUMO

LSH, a member of the SNF2 family of chromatin remodeling ATPases encoded by the Hells gene, is essential for normal levels of DNA methylation in the mammalian genome. While the role of LSH in the methylation of repetitive DNA sequences is well characterized, its contribution to the regulation of DNA methylation and the expression of protein-coding genes has not been studied in detail. In this report we investigate genome-wide patterns of DNA methylation at gene promoters in Hells(-/-) mouse embryonic fibroblasts (MEFs). We find that in the absence of LSH, DNA methylation is lost or significantly reduced at ∼20% of all normally methylated promoter sequences. As a consequence, a large number of genes are misexpressed in Hells(-/-) MEFs. Comparison of Hells(-/-) MEFs with wild-type MEFs and embryonic stem (ES) cells suggests that LSH is important for de novo DNA methylation events that accompany the establishment and differentiation of embryonic lineage cells. We further show that the generation of normal DNA methylation patterns and stable gene silencing at specific promoters require cooperation between LSH and the G9a/GLP complex of histone methylases. At such loci, G9a recruitment is compromised when LSH is absent or greatly reduced. Taken together, our data suggest a mechanism whereby LSH promotes binding of DNA methyltransferases and the G9a/GLP complex to specific loci and facilitates developmentally programmed DNA methylation and stable gene silencing during lineage commitment and differentiation.


Assuntos
DNA Helicases/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , DNA Helicases/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Inativação Gênica , Histona-Lisina N-Metiltransferase/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
16.
Epigenetics ; 18(1): 2137659, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36539387

RESUMO

The majority of epigenetic epidemiology studies to date have generated genome-wide profiles from bulk tissues (e.g., whole blood) however these are vulnerable to confounding from variation in cellular composition. Proxies for cellular composition can be mathematically derived from the bulk tissue profiles using a deconvolution algorithm; however, there is no method to assess the validity of these estimates for a dataset where the true cellular proportions are unknown. In this study, we describe, validate and characterize a sample level accuracy metric for derived cellular heterogeneity variables. The CETYGO score captures the deviation between a sample's DNA methylation profile and its expected profile given the estimated cellular proportions and cell type reference profiles. We demonstrate that the CETYGO score consistently distinguishes inaccurate and incomplete deconvolutions when applied to reconstructed whole blood profiles. By applying our novel metric to >6,300 empirical whole blood profiles, we find that estimating accurate cellular composition is influenced by both technical and biological variation. In particular, we show that when using a common reference panel for whole blood, less accurate estimates are generated for females, neonates, older individuals and smokers. Our results highlight the utility of a metric to assess the accuracy of cellular deconvolution, and describe how it can enhance studies of DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate incorporating our methodology into existing pipelines, we have made it freely available as an R package (https://github.com/ds420/CETYGO).


Assuntos
Algoritmos , Metilação de DNA , Feminino , Recém-Nascido , Humanos , Incerteza , Biologia Computacional/métodos , Epigenômica
17.
Sci Rep ; 12(1): 22284, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566336

RESUMO

Disadvantaged socio-economic position (SEP) is associated with greater biological age, relative to chronological age, measured by DNA methylation (positive 'age acceleration', AA). Social mobility has been proposed to ameliorate health inequalities. This study aimed to understand the association of social mobility with positive AA. Diagonal reference modelling and ordinary least square regression techniques were applied to explore social mobility and four measures of age acceleration (first-generation: 'Horvath', 'Hannum' and second-generation: 'Phenoage', DunedinPoAm) in n = 3140 participants of the UK Household Longitudinal Study. Disadvantaged SEP in early life is associated with positive AA for three (Hannum, Phenoage and DunedinPoAm) of the four measures examined while the second generation biomarkers are associated with SEP in adulthood (p < 0.01). Social mobility was associated with AA measured with Hannum only such that compared to no mobility, upward mobility was associated with greater age independently of origin and destination SEP. Compared to continuously advantaged groups, downward mobility was associated with positive Phenoage (1.06y [- 0.03, 2.14]) and DunedinPoAm assessed AA (0.96y [0.24, 1.68]). For these two measures, upward mobility was associated with negative AA (Phenoage, - 0.65y [- 1.30, - 0.002]; DunedinPoAm, - 0.96y [- 1.47, - 0.46]) compared to continually disadvantaged groups. While we find some support for three models of lifecourse epidemiology with early life as a sensitive period, SEP across the lifecourse and social mobility for age acceleration measured with DNA methylation, our findings suggest that disadvantaged SEP across the lifecourse is most consistently associated with positive AA.


Assuntos
Metilação de DNA , Mobilidade Social , Humanos , Adulto , Fatores Socioeconômicos , Estudos Longitudinais , Reino Unido/epidemiologia , Envelhecimento/genética
18.
Nat Commun ; 13(1): 5620, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153390

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the progressive accumulation of amyloid-beta and neurofibrillary tangles of tau in the neocortex. We profiled DNA methylation in two regions of the cortex from 631 donors, performing an epigenome-wide association study of multiple measures of AD neuropathology. We meta-analyzed our results with those from previous studies of DNA methylation in AD cortex (total n = 2013 donors), identifying 334 cortical differentially methylated positions (DMPs) associated with AD pathology including methylomic variation at loci not previously implicated in dementia. We subsequently profiled DNA methylation in NeuN+ (neuronal-enriched), SOX10+ (oligodendrocyte-enriched) and NeuN-/SOX10- (microglia- and astrocyte-enriched) nuclei, finding that the majority of DMPs identified in 'bulk' cortex tissue reflect DNA methylation differences occurring in non-neuronal cells. Our study highlights the power of utilizing multiple measures of neuropathology to identify epigenetic signatures of AD and the importance of characterizing disease-associated variation in purified cell-types.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Metilação de DNA/genética , Epigênese Genética , Humanos , Doenças Neurodegenerativas/genética , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo
19.
Front Endocrinol (Lausanne) ; 13: 1059120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726473

RESUMO

Background: There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results: We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions: We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.


Assuntos
Metilação de DNA , DNA Mitocondrial , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Encéfalo , Genes Mitocondriais
20.
Future Sci OA ; 7(4): FSO665, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33815817

RESUMO

Several epigenome-wide association studies of DNA methylation have highlighted altered DNA methylation in the ANK1 gene in Alzheimer's disease (AD) brain samples. However, no study has specifically examined ANK1 histone modifications in the disease. We use chromatin immunoprecipitation-qPCR to quantify tri-methylation at histone 3 lysine 4 (H3K4me3) and 27 (H3K27me3) in the ANK1 gene in entorhinal cortex from donors with high (n = 59) or low (n = 29) Alzheimer's disease pathology. We demonstrate decreased levels of H3K4me3, a marker of active gene transcription, with no change in H3K27me3, a marker of inactive genes. H3K4me3 is negatively correlated with DNA methylation in specific regions of the ANK1 gene. Our study suggests that the ANK1 gene shows altered epigenetic marks indicative of reduced gene activation in Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa