Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Genet ; 19(2): e1010633, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36735726

RESUMO

Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.


Assuntos
Cromossomos Humanos Par 6 , Pisum sativum , Humanos , Pisum sativum/genética , Centrômero/genética , Cromatina/genética , DNA Satélite/genética
2.
New Phytol ; 243(3): 1247-1261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837425

RESUMO

The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.


Assuntos
Haplótipos , Fenótipo , Pisum sativum , Melhoramento Vegetal , Pisum sativum/genética , Haplótipos/genética , Genes de Plantas , Proteínas de Plantas/genética , Mutação/genética , Folhas de Planta/genética , Cruzamento , Fatores de Transcrição/genética , Variação Genética
3.
Plant Physiol ; 189(3): 1587-1607, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35471237

RESUMO

Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.


Assuntos
Medicago truncatula , Simbiose , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Theor Appl Genet ; 135(5): 1511-1528, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35192006

RESUMO

KEY MESSAGE: A genome-wide association study for pea resistance against a pea-adapted biotype and a non-adapted biotype of the aphid, Acyrthosiphon pisum, identified a genomic region conferring resistance to both biotypes. In a context of reduced insecticide use, the development of cultivars resistant to insect pests is crucial for an integrated pest management. Pea (Pisum sativum) is a crop of major importance among cultivated legumes, for the supply of dietary proteins and nitrogen in low-input cropping systems. However, yields of the pea crop have become unstable due to plant parasites. The pea aphid (Acyrthosiphon pisum) is an insect pest species forming a complex of biotypes, each one adapted to feed on one or a few related legume species. This study aimed to identify resistance to A. pisum and the underlying genetic determinism by examining a collection of 240 pea genotypes. The collection was screened against a pea-adapted biotype and a non-adapted biotype of A. pisum to characterize their resistant phenotype. Partial resistance was observed in some pea genotypes exposed to the pea-adapted biotype. Many pea genotypes were completely resistant to non-adapted biotype, but some exhibited partial susceptibility. A genome-wide association study, using pea exome-capture sequencing data, enabled the identification of the major-effect quantitative trait locus ApRVII on the chromosome 7. ApRVII includes linkage disequilibrium blocks significantly associated with resistance to one or both of the two aphid biotypes studied. Finally, we identified candidate genes underlying ApRVII that are potentially involved in plant-aphid interactions and marker haplotypes linked with aphid resistance. This study sets the ground for the functional characterization of molecular pathways involved in pea defence to the aphids but also is a step forward for breeding aphid-resistant cultivars.


Assuntos
Afídeos , Animais , Estudo de Associação Genômica Ampla , Pisum sativum/genética , Melhoramento Vegetal , Locos de Características Quantitativas
5.
BMC Genomics ; 21(1): 536, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753054

RESUMO

BACKGROUND: Frost is a limiting abiotic stress for the winter pea crop (Pisum sativum L.) and identifying the genetic determinants of frost tolerance is a major issue to breed varieties for cold northern areas. Quantitative trait loci (QTLs) have previously been detected from bi-parental mapping populations, giving an overview of the genome regions governing this trait. The recent development of high-throughput genotyping tools for pea brings the opportunity to undertake genetic association studies in order to capture a higher allelic diversity within large collections of genetic resources as well as to refine the localization of the causal polymorphisms thanks to the high marker density. In this study, a genome-wide association study (GWAS) was performed using a set of 365 pea accessions. Phenotyping was carried out by scoring frost damages in the field and in controlled conditions. The association mapping collection was also genotyped using an Illumina Infinium® BeadChip, which allowed to collect data for 11,366 single nucleotide polymorphism (SNP) markers. RESULTS: GWAS identified 62 SNPs significantly associated with frost tolerance and distributed over six of the seven pea linkage groups (LGs). These results confirmed 3 QTLs that were already mapped in multiple environments on LG III, V and VI with bi-parental populations. They also allowed to identify one locus, on LG II, which has not been detected yet and two loci, on LGs I and VII, which have formerly been detected in only one environment. Fifty candidate genes corresponding to annotated significant SNPs, or SNPs in strong linkage disequilibrium with the formers, were found to underlie the frost damage (FD)-related loci detected by GWAS. Additionally, the analyses allowed to define favorable haplotypes of markers for the FD-related loci and their corresponding accessions within the association mapping collection. CONCLUSIONS: This study led to identify FD-related loci as well as corresponding favorable haplotypes of markers and representative pea accessions that might to be used in winter pea breeding programs. Among the candidate genes highlighted at the identified FD-related loci, the results also encourage further attention to the presence of C-repeat Binding Factors (CBF) as potential genetic determinants of the frost tolerance locus on LG VI.


Assuntos
Estudo de Associação Genômica Ampla , Pisum sativum , Alelos , Mapeamento Cromossômico , Desequilíbrio de Ligação , Pisum sativum/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
6.
Plant Cell ; 28(10): 2545-2559, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27670672

RESUMO

The molecular pathways responsible for the flowering response to photoperiod have been extensively studied in Arabidopsis thaliana and cereals but remain poorly understood in other major plant groups. Here, we describe a dominant mutant at the LATE BLOOMER2 (LATE2) locus in pea (Pisum sativum) that is late-flowering with a reduced response to photoperiod. LATE2 acts downstream of light signaling and the circadian clock to control expression of the main photoperiod-regulated FT gene, FTb2, implying that it plays a primary role in photoperiod measurement. Mapping identified the CYCLING DOF FACTOR gene CDFc1 as a strong candidate for LATE2, and the late2-1D mutant was found to carry a missense mutation in CDFc1 that impairs its capacity to bind to the blue-light photoreceptor FKF1 in yeast two-hybrid assays and delays flowering in Arabidopsis when overexpressed. Arabidopsis CDF genes are important negative regulators of CONSTANS (CO) transcription, but we found no effect of LATE2 on the transcription of pea CO-LIKE genes, nor on genes in any other families previously implicated in the activation of FT in Arabidopsis. Our results reveal an important component of the pea photoperiod response pathway and support the view that regulation of FTb2 expression by photoperiod occurs via a CO-independent mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Pisum sativum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Fotoperíodo
8.
Plant Physiol ; 173(4): 2253-2264, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202598

RESUMO

Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant.


Assuntos
Flores/genética , Fotoperíodo , Pisum sativum/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Mutação , Fenótipo , Estações do Ano , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Fatores de Transcrição/genética
9.
New Phytol ; 214(4): 1597-1613, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28322451

RESUMO

Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.


Assuntos
Globulinas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Sementes/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Globulinas/genética , Mutação , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteômica/métodos , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant J ; 84(1): 1-19, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296678

RESUMO

Next-generation sequencing technologies allow an almost exhaustive survey of the transcriptome, even in species with no available genome sequence. To produce a Unigene set representing most of the expressed genes of pea, 20 cDNA libraries produced from various plant tissues harvested at various developmental stages from plants grown under contrasting nitrogen conditions were sequenced. Around one billion reads and 100 Gb of sequence were de novo assembled. Following several steps of redundancy reduction, 46 099 contigs with N50 length of 1667 nt were identified. These constitute the 'Caméor' Unigene set. The high depth of sequencing allowed identification of rare transcripts and detected expression for approximately 80% of contigs in each library. The Unigene set is now available online (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi), allowing (i) searches for pea orthologs of candidate genes based on gene sequences from other species, or based on annotation, (ii) determination of transcript expression patterns using various metrics, (iii) identification of uncharacterized genes with interesting patterns of expression, and (iv) comparison of gene ontology pathways between tissues. This resource has allowed identification of the pea orthologs of major nodulation genes characterized in recent years in model species, as a major step towards deciphering unresolved pea nodulation phenotypes. In addition to a remarkable conservation of the early transcriptome nodulation apparatus between pea and Medicago truncatula, some specific features were highlighted. The resource provides a reference for the pea exome, and will facilitate transcriptome and proteome approaches as well as SNP discovery in pea.


Assuntos
Regulação da Expressão Gênica de Plantas , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/genética , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , RNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala
11.
Plant J ; 84(6): 1257-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590015

RESUMO

Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.


Assuntos
Cromossomos de Plantas/genética , Pisum sativum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Transcriptoma
12.
BMC Genomics ; 17: 124, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26897486

RESUMO

BACKGROUND: Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. METHODS: A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. RESULTS: GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. CONCLUSION: This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.


Assuntos
Aphanomyces , Mapeamento Cromossômico , Resistência à Doença/genética , Pisum sativum/genética , Doenças das Plantas/genética , Alelos , Intervalos de Confiança , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Pisum sativum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
13.
BMC Genomics ; 16: 105, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25765216

RESUMO

BACKGROUND: Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. RESULTS: A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. CONCLUSION: The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.


Assuntos
Variação Genética , Genoma de Planta , Pisum sativum/genética , Teorema de Bayes , Análise Discriminante , Marcadores Genéticos , Genótipo , Análise dos Mínimos Quadrados , Modelos Lineares , Repetições de Microssatélites/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
14.
Plant Cell Environ ; 38(7): 1299-311, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25367071

RESUMO

LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Mitocondriais/metabolismo , Pisum sativum/fisiologia , Sequência de Aminoácidos , Genótipo , Proteínas de Choque Térmico/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Sementes/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Temperatura
15.
BMC Genomics ; 15: 126, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521263

RESUMO

BACKGROUND: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. RESULTS: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs.We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. CONCLUSIONS: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.


Assuntos
Pisum sativum/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Genes de Plantas , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
16.
Theor Appl Genet ; 127(6): 1319-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24695842

RESUMO

KEY MESSAGE: Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.


Assuntos
Congelamento , Pisum sativum/genética , Locos de Características Quantitativas , Estresse Fisiológico/genética , Pisum sativum/fisiologia , Fenótipo , Análise de Componente Principal
17.
Theor Appl Genet ; 127(10): 2225-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25119872

RESUMO

KEY MESSAGE: Gene-based SNPs were identified and mapped in pea using five recombinant inbred line populations segregating for traits of agronomic importance. Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.


Assuntos
Mapeamento Cromossômico , Pisum sativum/genética , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Biblioteca Gênica , Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Lens (Planta)/genética , Medicago truncatula/genética , Análise de Sequência de DNA , Sintenia , Transcriptoma
18.
Front Plant Sci ; 15: 1359117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533398

RESUMO

Improving the seed protein concentration (SPC) of pea (Pisum sativum L.) has turned into an important breeding objective because of the consumer demand for plant-based protein and demand from protein fractionation industries. To support the marker-assisted selection (MAS) of SPC towards accelerated breeding of improved cultivars, we have explored two diverse recombinant inbred line (RIL) populations to identify the quantitative trait loci (QTLs) associated with SPC. The two RIL populations, MP 1918 × P0540-91 (PR-30) and Ballet × Cameor (PR-31), were derived from crosses between moderate SPC × high SPC accessions. A total of 166 and 159 RILs of PR-30 and PR-31, respectively, were genotyped using an Axiom® 90K SNP array and 13.2K SNP arrays, respectively. The RILs were phenotyped in replicated trials in two and three locations of Saskatchewan, Canada in 2020 and 2021, respectively, for agronomic assessment and SPC. Using composite interval mapping, we identified three QTLs associated with SPC in PR-30 and five QTLs in PR-31, with the LOD value ranging from 3.0 to 11.0. A majority of these QTLs were unique to these populations compared to the previously known QTLs for SPC. The QTL SPC-Ps-5.1 overlapped with the earlier reported SPC associated QTL PC-QTL-3. Three QTLs, SPC-Ps-4.2, SPC-Ps-5.1, and SPC-Ps-7.2 with LOD scores of 7.2, 7.9, and 11.3, and which explained 14.5%, 11.6%, and 11.3% of the phenotypic variance, respectively, can be used for marker-assisted breeding to increase SPC in peas. Eight QTLs associated with the grain yield were identified with LOD scores ranging from 3.1 to 8.2. Two sets of QTLs, SPC-Ps-2.1 and GY-Ps-2.1, and SPC-Ps-5.1 and GY-Ps-5.3, shared the QTL/peak regions. Each set of QTLs contributed to either SPC or grain yield depending on which parent the QTL region is derived from, thus confirming that breeding for SPC should take into consideration the effects on grain yield.

19.
Front Artif Intell ; 6: 1191122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601035

RESUMO

While the continuing decline in genotyping and sequencing costs has largely benefited plant research, some key species for meeting the challenges of agriculture remain mostly understudied. As a result, heterogeneous datasets for different traits are available for a significant number of these species. As gene structures and functions are to some extent conserved through evolution, comparative genomics can be used to transfer available knowledge from one species to another. However, such a translational research approach is complex due to the multiplicity of data sources and the non-harmonized description of the data. Here, we provide two pipelines, referred to as structural and functional pipelines, to create a framework for a NoSQL graph-database (Neo4j) to integrate and query heterogeneous data from multiple species. We call this framework Orthology-driven knowledge base framework for translational research (Ortho_KB). The structural pipeline builds bridges across species based on orthology. The functional pipeline integrates biological information, including QTL, and RNA-sequencing datasets, and uses the backbone from the structural pipeline to connect orthologs in the database. Queries can be written using the Neo4j Cypher language and can, for instance, lead to identify genes controlling a common trait across species. To explore the possibilities offered by such a framework, we populated Ortho_KB to obtain OrthoLegKB, an instance dedicated to legumes. The proposed model was evaluated by studying the conservation of a flowering-promoting gene. Through a series of queries, we have demonstrated that our knowledge graph base provides an intuitive and powerful platform to support research and development programmes.

20.
Theor Appl Genet ; 124(4): 755-68, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22113590

RESUMO

Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant's efficiency to take up and process carbon and N resources. A recombinant inbred line population (LR4) was grown in a glasshouse experiment under two contrasting nitrate concentrations. At low nitrate, symbiotic N(2) fixation was the main N source for plant growth and a QTL with a large effect located on linkage group (LG) 8 affected all the traits. Significantly, efficiency variables were necessary both to precisely localize a second QTL on LG5 and to detect a third QTL involved in epistatic interactions on LG2. At high nitrate, nitrate assimilation was the main N source and a larger number of QTL with weaker effects were identified compared to low nitrate. Only two QTL were common to both nitrate treatments: a QTL of belowground biomass located at the bottom of LG3 and another one on LG6 related to three different variables (leaf area, specific N uptake and aboveground:belowground biomass ratio). Possible functions of several candidate genes underlying QTL of efficiency variables could be proposed. Altogether, our results provided new insights into the genetic control of N nutrition in M. truncatula. For instance, a novel result for M. truncatula was identification of two epistatic interactions in controlling plant N(2) fixation. As such this study showed the value of a simple conceptual framework based on efficiency variables for studying genetic determinants of complex traits and particularly epistatic interactions.


Assuntos
Medicago truncatula/genética , Nitrogênio/metabolismo , Folhas de Planta/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Ligação Genética , Medicago truncatula/crescimento & desenvolvimento , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa