Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 435, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370005

RESUMO

Human adenoviruses (HAdV) are a diverse group of viruses causing a broad range of infections of the respiratory, urogenital and gastrointestinal tracts and keratoconjunctivitis. There are seven species of human adenoviruses with 113 genotypes which may contain multiple genetic variants. This study characterised respiratory human adenoviruses and associated factors in samples collected from selected hospitals in Uganda. A total of 2,298 nasopharyngeal samples were collected between the period of 2008 to 2016 from patients seeking health care at tertiary hospitals for influenza-like illness. They were screened by polymerase chain reaction (PCR) to determine the prevalence of HAdV. HAdV was cultured in A549 cell lines and the hexon gene was sequenced for genotyping. Of the 2,298 samples tested, 225 (9.8%) were adenovirus-positive by PCR. Age was found to be significantly associated with HAdV infections (p = 0.028) with 98% (220/225) of the positives in children aged 5 years and below and none in adults above 25 years of age. The sequenced isolates belonged to species HAdV-B and HAdV-C with most isolates identified as genotype B3. The results showed a high prevalence and genetic diversity in respiratory HAdV circulating in Ugandan population. Deeper genomic characterization based on whole genome sequencing may be necessary to further elucidate possible transmission and impact of current adenovirus-vectored vaccines in Africa.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções Respiratórias , Criança , Adulto , Humanos , Lactente , Uganda/epidemiologia , Análise de Sequência de DNA , Infecções por Adenovirus Humanos/epidemiologia , Infecções Respiratórias/epidemiologia , Genótipo , Filogenia
2.
BMC Infect Dis ; 21(1): 585, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134656

RESUMO

BACKGROUND: Human coronaviruses are causative agents of respiratory infections with several subtypes being prevalent worldwide. They cause respiratory illnesses of varying severity and have been described to be continuously emerging but their prevalence is not well documented in Uganda. This study assessed the seroprevalence of antibodies against the previously known human coronaviruses prior 2019 in Uganda. METHODS: A total 377 serum samples collected from volunteers that showed influenza like illness in five hospital-based sentinel sites and archived were analyzed using a commercial Qualitative Human Coronavirus Antibody IgG ELISA kit. Although there is no single kit available that can detect the presence of all the circulating coronaviruses, this kit uses a nucleoprotein, aa 340-390 to coat the wells and since there is significant homology among the various human coronavirus strains with regards to the coded for proteins, there is significant cross reactivity beyond HCoV HKU-39849 2003. This gives the kit a qualitative ability to detect the presence of human coronavirus antibodies in a sample. RESULTS: The overall seroprevalence for all the sites was 87.53% with no significant difference in the seroprevalence between the Hospital based sentinel sites (p = 0.8). Of the seropositive, the age group 1-5 years had the highest percentage (46.97), followed by 6-10 years (16.67) and then above 20 (16.36). An odds ratio of 1.6 (CI 0.863-2.97, p = 0.136) showed that those volunteers below 5 years of age were more likely to be seropositive compared to those above 5 years. The seropositivity was generally high throughout the year with highest being recorded in March and the lowest in February and December. CONCLUSIONS: The seroprevalence of Human coronaviruses is alarmingly high which calls for need to identify and characterize the circulating coronavirus strains so as to guide policy on the control strategies.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/epidemiologia , Coronavirus , Imunoglobulina G/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Hospitais , Humanos , Lactente , Masculino , Vigilância de Evento Sentinela , Estudos Soroepidemiológicos , Uganda/epidemiologia , Adulto Jovem
3.
J Fish Dis ; 41(10): 1589-1600, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30074242

RESUMO

A multilocus sequence analysis (MLSA) was carried out to delineate Aeromonas hydrophila from fish in Uganda. Five housekeeping genes including recA, gyrB, metG, gltA and pps; and the 16S rRNA gene were amplified and sequenced from a total of nine A. hydrophila isolates. The obtained sequences were edited, and consensus sequences generated for each gene locus. The housekeeping gene sequences were concatenated and phylogenetic analysis performed in MEGA version 7.0.2. Pairwise distances ranged from 0.000 to 0.118, highest within the gltA gene locus and lowest within the 16S rRNA gene. The average evolutionary diversity within isolates from the same source ranged between 0.002 and 0.037, and it was 0.033 between the different sources. Similar tree topologies were obtained from the different gene loci with recA, metG and gyrB being more consistent in discriminating isolates according to sources while the 16S rRNA gene had the lowest resolution. The concatenated tree had the highest discriminatory power. This study revealed that A. hydrophila strains infecting fish in Uganda are of diverse genotypes suggesting different sources of infection in a given outbreak. Efforts to minimize spread of the bacteria across sources should be emphasized to control infections of mixed genotypes.


Assuntos
Aeromonas hydrophila/genética , Variação Genética , Genótipo , Infecções por Bactérias Gram-Negativas/veterinária , Tipagem de Sequências Multilocus/métodos , Filogenia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Ribossômico/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Genes Essenciais , Infecções por Bactérias Gram-Negativas/epidemiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Uganda/epidemiologia
4.
Avian Pathol ; 46(4): 386-395, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28277776

RESUMO

Vaccine failures after Newcastle disease vaccination with the current commercial vaccines have been reported and are associated with many factors, including genotypic and antigenic differences between vaccine and outbreak strains, although all APMV-1 members belong to one serotype. We assessed the immunoprotection ability of four thermostable, low-virulent Newcastle disease-virus isolates from Ugandan waterfowl against challenge with a virulent strain (MDT = 36.8 h, ICPI = 1.78) isolated from morbid chicken. Six-week-old commercial Leghorn layers, challenged at 21 days post immunization were used. Four isolates designated: NDV-133/UG/MU/2011, NDV-177/UG/MU/2011, NDV-178/UG/MU/2011 and NDV-173/UG/MU/2011 induced mean haemagglutinin inhibition antibody titres of log2 9.3, 8.2, 6.3 and 2.0, respectively, at 21 days post immunization. The antibody titres correlated with the protection rates (R² = 0.86, p < 0.007) of 60%, 50%, 20% and 0% of birds, respectively, against challenge at 14 days post challenge. Further evaluation of these and more low-virulent isolates might provide an alternative to the current commercial vaccine failures.


Assuntos
Galinhas , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Animais , Sequência de Bases , Embrião de Galinha , DNA Viral/genética , Imunogenicidade da Vacina , Vírus da Doença de Newcastle/patogenicidade , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Replicação Viral/fisiologia
5.
Virol J ; 13: 103, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27329265

RESUMO

BACKGROUND: Uganda poultry production is still faced with frequent outbreaks of Newcastle disease (ND) in the backyard free-range systems despite the accessibility of cross protective vaccines. Live bird markets and waterfowl has long been reported as a major source of disease spread as well as potential sources of avirulent strains that may mutate to virulent strains. ND-virus has been reported enzootic in Ugandan poultry but limited studies have been conducted to ascertain thermostability phenotypes of the Ugandan ND-virus strains and to understand how these relate to vaccine strains. METHODS: This study evaluated thermostability of 168 ND-virus field isolates recovered from live bird markets and waterfowls in Uganda compared to two live commercial vaccine strains (I2 and LaSota) by standard thermostability procedures and Hemagglutinin-Neuraminidase (HN) gene domains. The known pathotypes with thermostability profiles were compared at HN amino acid sequences. RESULTS: Field isolates displayed disparate heat stability and HN gene domains. Thermolabile isolates were inactivated within 15 min, while the most thermostable isolates were inactivated in 120 min. Four thermostable isolates had more than 2 log2 heamaglutinin (HA) titers during heat treatment and the infectivity of 9.8 geometric mean of log10 EID50 % in embryonated eggs. One isolate from this study exhibited a comparable thermostability and stable infectivity titers after serial passages, to that of reference commercial vaccine was recommended for immunogenicity and protection studies. CONCLUSION: The occurrence of ND-virus strains in waterfowl and live bird markets with disparate thermostability and varying HN gene domains indicate circulation of different thermostable and thermolabile ND-virus pathotypes in the country.


Assuntos
Doenças das Aves/virologia , Proteína HN/química , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Anseriformes/virologia , Aves/virologia , Proteína HN/genética , Proteína HN/metabolismo , Temperatura Alta , Vírus da Doença de Newcastle/química , Vírus da Doença de Newcastle/genética , Domínios Proteicos , Estabilidade Proteica , Uganda , Proteínas Virais/genética
6.
Arch Virol ; 161(4): 999-1003, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26724820

RESUMO

A cross-sectional study was undertaken during 2012-2013 to determine the prevalence, strains and factors associated with rotavirus infection among under-5-year-old children hospitalized with acute diarrhea in Uganda. Rotaviruses were detected in 37 % (263/712) of the children. The most prevalent strains were G9P[8] (27 %, 55/204) and G12P[4] (18.6 %, 38/204). Mixed infections were detected in 22.5 % (46/204) of the children. The study suggests that consumption of raw vegetables (OR = 1.45, 95 % CI = 1.03-2.03) and family ownership of dogs (OR = 1.9, 95 % CI = 1.04-3.75) increases the risk of rotavirus infection. The study findings will be used to assess the impact of RV vaccination in Uganda.


Assuntos
Infecções por Rotavirus/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Razão de Chances , Fatores de Risco , Uganda/epidemiologia
7.
Am J Primatol ; 78(11): 1222-1234, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27331804

RESUMO

Infectious diseases pose one of the most significant threats to the survival of great apes in the wild. The critically endangered mountain gorilla (Gorilla beringei beringei) is at high risk for contracting human pathogens because approximately 60% of the population is habituated to humans to support a thriving ecotourism program. Disease surveillance for human and non-human primate pathogens is important for population health and management of protected primate species. Here, we evaluate discarded plants from mountain gorillas and sympatric golden monkeys (Cercopithecus mitis kandti), as a novel biological sample to detect viruses that are shed orally. Discarded plant samples were tested for the presence of mammalian-specific genetic material and two ubiquitous DNA and RNA primate viruses, herpesviruses, and simian foamy virus. We collected discarded plant samples from 383 wild human-habituated mountain gorillas and from 18 habituated golden monkeys. Mammalian-specific genetic material was recovered from all plant species and portions of plant bitten or chewed by gorillas and golden monkeys. Gorilla herpesviral DNA was most consistently recovered from plants in which leafy portions were eaten by gorillas. Simian foamy virus nucleic acid was recovered from plants discarded by golden monkeys, indicating that it is also possible to detect RNA viruses from bitten or chewed plants. Our findings show that discarded plants are a useful non-invasive sampling method for detection of viruses that are shed orally in mountain gorillas, sympatric golden monkeys, and potentially other species. This method of collecting specimens from discarded plants is a new non-invasive sampling protocol that can be combined with collection of feces and urine to evaluate the most common routes of viral shedding in wild primates. Am. J. Primatol. 78:1222-1234, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Monitoramento Epidemiológico , Gorilla gorilla , Haplorrinos , Plantas , Vírus , Animais , Fezes , Humanos
8.
Virol J ; 11: 173, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273689

RESUMO

BACKGROUND: Newcastle disease is still a serious disease of poultry especially in backyard free-range production systems despite the availability of cross protective vaccines. Healthy-looking poultry from live bird markets have been suspected as a major source of disease spread although limited studies have been conducted to ascertain the presence of the virulent strains in the markets and to understand how they are related to outbreak strains. METHODS: This study evaluated the occurrence of Newcastle disease virus in samples collected from poultry in live bird markets across Uganda. The isolates were pathoyped using standard methods (mean death time (MDT), intracelebral pathogenicity index (ICPI), and sequencing of the fusion protein cleavage site motif) and also phylogenetically analysed after sequencing of the full fusion and hemagglutin-neuraminidase genes. The isolates were classified into genotypes and subgenotypes based on the full fusion protein gene classification system and compared with other strains in the region and world-wide. RESULTS: Virulent avian paramyxovirus type I (APMV-1) (Newcastle disease virus) was isolated in healthy-looking poultry in live bird markets. The viruses belonged to a new subgenotype, Vd, in genotype V, and clustered together with Tanzania and Kenya strains. They harbored low genetic diversity. CONCLUSION: The occurrence of virulent AMPV-1 strains in live bird markets may serve as sources of Newcastle disease outbreaks in non-commercial farms.


Assuntos
Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Animais , Comércio , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Aves Domésticas , Uganda/epidemiologia , Virulência
9.
BMC Vet Res ; 10: 50, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24576325

RESUMO

BACKGROUND: Avian influenza viruses may cause severe disease in a variety of domestic animal species worldwide, with high mortality in chickens and turkeys. To reduce the information gap about prevalence of these viruses in animals in Uganda, this study was undertaken. RESULTS: Influenza A virus prevalence by RT-PCR was 1.1% (45/4,052) while seroprevalence by ELISA was 0.8% (24/2,970). Virus prevalence was highest in domestic ducks (2.7%, 17/629) and turkeys (2.6%, 2/76), followed by free-living waterfowl (1.3%, 12/929) and swine (1.4%, 7/511). A lower proportion of chicken samples (0.4%, 7/1,865) tested positive. No influenza A virus was isolated. A seasonal prevalence of these viruses in waterfowl was 0.7% (4/561) for the dry and 2.2% (8/368) for the wet season. In poultry, prevalence was 0.2% (2/863) for the dry and 1.4% (24/1,713) for the wet season, while that of swine was 0.0% (0/159) and 2.0% (7/352) in the two seasons, respectively. Of the 45 RT-PCR positive samples, 13 (28.9%) of them were H5 but none was H7. The 19 swine sera positive for influenza antibodies by ELISA were positive for H1 antibodies by HAI assay, but the subtype(s) of ELISA positive poultry sera could not be determined. Antibodies in the poultry sera could have been those against subtypes not included in the HAI test panel. CONCLUSIONS: The study has demonstrated occurrence of influenza A viruses in animals in Uganda. The results suggest that increase in volumes of migratory waterfowl in the country could be associated with increased prevalence of these viruses in free-living waterfowl and poultry.


Assuntos
Animais Selvagens , Anseriformes , Vírus da Influenza A/isolamento & purificação , Gado , Animais , Feminino , Modelos Logísticos , Masculino , Razão de Chances , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Fatores de Risco , Estudos Soroepidemiológicos , Uganda/epidemiologia
10.
Microbiol Resour Announc ; 13(1): e0081723, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38078696

RESUMO

Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG).

11.
Virol J ; 10: 11, 2013 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-23289789

RESUMO

BACKGROUND: Influenza B viruses can cause morbidity and mortality in humans but due to the lack of an animal reservoir are not associated with pandemics. Because of this, there is relatively limited genetic sequences available for influenza B viruses, especially from developing countries. Complete genome analysis of one influenza B virus and several gene segments of other influenza B viruses isolated from Uganda from May 2009 through December 2010 was therefore undertaken in this study. METHODS: Samples were collected from patients showing influenza like illness and screened for influenza A and B by PCR. Influenza B viruses were isolated on Madin-Darby Canine Kidney cells and selected isolates were subsequently sequenced and analyzed phylogenetically. FINDINGS: Of the 2,089 samples collected during the period, 292 were positive by PCR for influenza A or B; 12.3% of the PCR positives were influenza B. Thirty influenza B viruses were recovered and of these 25 that grew well consistently on subculture were subjected to further analysis. All the isolates belonged to the B/Victoria-lineage as identified by hemagglutination inhibition assay and genetic analysis except one isolate that grouped with the B-Yamagata-lineage. The Ugandan B/Victoria-lineage isolates grouped in clade 1 which was defined by the N75K, N165K and S172P substitutions in hemagglutinin (HA) protein clustered together with the B/Brisbane/60/2008 vaccine strain. The Yamagata-like Ugandan strain, B/Uganda/MUWRP-053/2009, clustered with clade 3 Yamagata viruses such as B/Bangladesh/3333/2007 which is characterized by S150I and N166Y substitutions in HA. CONCLUSION: In general there was limited variation among the Ugandan isolates but they were interestingly closer to viruses from West and North Africa than from neighboring Kenya. Our isolates closely matched the World Health Organization recommended vaccines for the seasons.


Assuntos
Vírus da Influenza B/classificação , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Análise de Sequência de DNA , Adolescente , Linhagem Celular , Criança , Pré-Escolar , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Lactente , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Rim/virologia , Epidemiologia Molecular , Dados de Sequência Molecular , Neuraminidase/genética , Filogenia , Reação em Cadeia da Polimerase , Estações do Ano , Uganda/epidemiologia , Adulto Jovem
12.
Microorganisms ; 11(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630428

RESUMO

Commensal Escherichia coli with broad repertoire of virulence and antimicrobial resistance (AMR) genes pose serious public health risks as reservoirs of AMR and virulence. This study undertook whole genome characterization of commensal E. coli from food-producing animals in Uganda to investigate their genome variability (resistome and virulome). We established that the E. coli had high genomic diversity with 38 sequence types, 24 FimH types, and 33 O-antigen serotypes randomly distributed within three phylogroups (A, B1, and E). A greater proportion (≥93.65%) of the E. coli were resistant to amoxicillin/clavulanate and ampicillin antibiotics. The isolates were AmpC beta-lactamase producers dominated by blaEC-15 (71.88%) and tet(A) (20.31%) antimicrobial resistant genes besides a diverse armory of virulence-associated genes in the class of exotoxin, adhesins, iron uptake, and serine protease autotransporters which varied by host species. Cattle were found to be the major source of E. coli carrying Shiga toxin genes, whereas swine was the main source of E. coli carrying colicin-like Usp toxin gene. The study underscores the importance of livestock as the carrier of E. coli with antimicrobial resistance and a large repertoire of virulence traits with a potential of causing disease in animals and humans by acquiring more genetic traits.

13.
Sci Rep ; 13(1): 10229, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353515

RESUMO

Multidrug-resistant ESBL-producing Escherichia coli are a leading cause of infections in hospital and community settings. Based on samples from two hospitals in Uganda and households of inpatients we tested the hypothesis that ESBL E. coli and/or their resistance determinants could spread within the healthcare and community settings through discharged patients that were still colonized. We used bacterial culture, susceptibility testing whole genome sequencing and detailed bioinformatics analysis to test the above hypothesis. Genome analysis revealed presence of predominantly blaCTX-M-15 and blaOXA-1 genes with a total resistome with genes belonging to 14 different classes of antimicrobials. Short-term cases of strain sharing were reported within each setting and strains from the two settings were found to cluster together based on their overall resistome. Long-term horizontal transfer of ESBL genes by various IncF and IncY types of plasmids shared between healthcare and community settings was demonstrated. Based on hybrid assembly, plasmid reconstruction and phylogenetic analyses, our study suggests that while the dissemination of AMR between healthcare and community settings in the short-term is possible at whole strain level, the long-term transmission between healthcare and communities is sustained by the transfer of plasmids circulating across niches and disseminating related resistomes.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , beta-Lactamases/genética , Filogenia , Uganda/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Plasmídeos/genética , Atenção à Saúde
14.
Pathogens ; 12(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003798

RESUMO

Klebsiella pneumoniae is a threat to public health due to its continued evolution. In this study, we investigated the evolution, convergence, and transmission of hypervirulent and multi-drug resistant (MDR) clones of K. pneumoniae within healthcare facilities in Uganda. There was high resistance to piperacillin (90.91%), cefuroxime (86.96%), ceftazidime (84.62%), cefotaxime (84.00%), amoxicillin/clavulanate (75%), nalidixic acid (73.68%), and nitrofurantoin (71.43%) antibiotics among K. pneumoniae isolates. The isolates were genetically diverse, consisting of 20 different sequence types (STs) and 34 K-serotype groups. Chromosomal fosA (for fosfomycin) and oqxAB efflux pump genes were detected in all isolates. Two carbapenem resistance genes, blaNDM-5 and blaOXA-181 plus extended-spectrum beta-lactamase (blaCTX-M-15) gene (68.12%), quinolone-resistant genes qnrS1 (28.99%), qnrB1 (13.04%), and qnrB6 (13.04%) and others were found. All, except three of the isolates, harbored plasmids. While the isolates carried a repertoire of virulence genes, only two isolates carried hypervirulent genes demonstrating a low prevalence (2.90%) of hypervirulent strains. Our study demonstrated genetically diverse populations of K. pneumoniae, low levels of carbapenem resistance among the isolates, and no convergence of MDR and hypervirulence. Emerging high-risk international pandemic clones (ST11, ST14, ST147, ST 86 and ST307) were detected in these healthcare settings which are difficult to treat.

15.
PLoS One ; 18(11): e0294424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992119

RESUMO

Multi-drug resistant (MDR) globally disseminated extraintestinal pathogenic high-risk Escherichia coli (ExPEC) clones are threatening the gains in bacterial disease management. In this study, we evaluated the genomic structure including the resistome and virulome of the E. coli isolates from extraintestinal infections using whole genome sequencing (WGS). The results highlight that isolates were highly resistant (≥ 90.0%) to commonly used antibiotics (Ampicillin, Trimethoprim-Sulfamethoxazole, Nalidixic acid, and Piperacillin) and were less (<14%) resistant to last resort antibiotics; Imipenem (10.94%) and Meropenem (10.20%). A greater proportion of the E. coli isolates belonged to phylogroup B2 (30.52%) and phylogroup A (27.37%). The sequence types ST131 of phylogroup B2 (21.05%) and ST648 of phylogroup F (9.3%) were the dominant pandemic high-risk clones identified in addition to the ST1193, ST410, ST69, ST38, ST405, and ST10. Many of the isolates were MDR and most (64.58%) carried the blaCTX-M-15 gene for extended-spectrum ß-lactamases. There was a high correlation between phylogroups and the occurrence of both antimicrobial resistance and virulence genes. The cephalosporin-resistance gene blaEC-5 was only found in phylogroup B2 while blaEC-8 and blaEC-19, were only found within phylogroup D and phylogroup F respectively. Aminoglycoside gene (aadA1) was only associated with phylogroups D and C. The isolates were armed with a broad range of virulence genes including adhesins, toxins, secreted proteases, iron uptake genes, and others. The yfcv, chuA, and kpsE genes preferentially occurred among isolates of phylogroup B2. The study underlines the predominance of MDR internationally disseminated high-risk ExPEC clones with a broad range of virulence genes known to be highly transmissible in healthcare and community settings.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Atenção Terciária à Saúde , Uganda , Pandemias , Genótipo , Antibacterianos/farmacologia , Fatores de Virulência/genética , beta-Lactamases/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Escherichia coli/genética
16.
Viruses ; 15(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36992447

RESUMO

Rotavirus genotypes are species specific. However, interspecies transmission is reported to result in the emergence of new genotypes. A cross-sectional study of 242 households with 281 cattle, 418 goats, 438 pigs, and 258 humans in Uganda was undertaken between 2013 and 2014. The study aimed to determine the prevalence and genotypes of rotaviruses across co-habiting host species, as well as potential cross-species transmission. Rotavirus infection in humans and animals was determined using NSP3 targeted RT-PCR and ProSpecT Rotavirus ELISA tests, respectively. Genotyping of rotavirus-positive samples was by G- and P-genotype specific primers in nested RT-PCR assays while genotyping of VP4 and VP7 proteins for the non-typeable human positive sample was done by Sanger sequencing. Mixed effect logistic regression was used to determine the factors associated with rotavirus infection in animals. The prevalence of rotavirus was 4.1% (95% CI: 3.0-5.5%) among the domestic animals and 0.8% (95% CI: 0.4-1.5%) in humans. The genotypes in human samples were G9P[8] and P[4]. In animals, six G-genotypes, G3(2.5%), G8(10%), G9(10%), G11(26.8%), G10(35%), and G12(42.5%), and nine P-genotypes, P[1](2.4%), P[4](4.9%), P[5](7.3%), P[6](14.6%), P[7](7.3%), P[8](9.8%), P[9](9.8%), P[10](12.2%), and P[11](17.1%), were identified. Animals aged 2 to 18 months were less likely to have rotavirus infection in comparison with animals below 2 months of age. No inter-host species transmission was identified.


Assuntos
Infecções por Rotavirus , Rotavirus , Humanos , Animais , Bovinos , Suínos , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Animais Domésticos , Estudos Transversais , Uganda/epidemiologia , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Genótipo , Cabras , Filogenia , Fezes
17.
Microbiol Resour Announc ; 12(4): e0084022, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36877041

RESUMO

We report a genome sequence of Wohlfahrtiimonas chitiniclastica strain MUWRP0946, isolated from a hospitalized patient in Uganda. The genome size was 2.08 million bases, and the genome completeness was 94.22%. The strain carries tetracycline, folate pathway antagonist, ß-lactam, and aminoglycoside antibiotic resistance genes.

18.
J Med Entomol ; 60(1): 185-192, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36321534

RESUMO

Tick-borne diseases (TBDs) pose a significant risk to humans and represent one of the major factors influencing readiness within the United States' military worldwide. Additionally, ticks and TBDs constitute major animal health problems leading to economic losses at multiple levels affecting low- and middle-income countries the hardest. Tick control is frequently hampered by issues ranging from acaricide resistance to lack of data on tick distribution and infection rates. We conducted a cross-sectional study to assess tick species distribution, host use, and rickettsial pathogen infection rate of ticks in different areas of the Uganda Cattle Corridor. We identified 4,425 hard ticks (Ixodida: Ixodidae) comprised of seven species by morphological characters with 3,315 ticks collected from four locations during the dry season and 1,110 ticks from one location during the wet season. Rickettsial pathogen prevalence was assessed in ticks collected from two districts to determine the minimum infection rate compared across seasons, village location, and tick species. We found statistically significant differences in the abundance and distribution of tick species among districts in the dry season, host animal species, and the proportion of rickettsial positive pools between villages. Seasonality, village location, and tick species do not affect the minimum infection rate of rickettsial pathogens of ticks in Uganda, but village location affects the proportion of positive tick pools. These results indicate geographical and seasonal differences among pathogen-harboring ticks contributing to our understanding of the current distribution of ticks and TBDs in Uganda.


Assuntos
Doenças dos Bovinos , Ixodidae , Infecções por Rickettsia , Rickettsia , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Carrapatos , Humanos , Animais , Bovinos , Estações do Ano , Uganda/epidemiologia , Estudos Transversais , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças dos Bovinos/epidemiologia
19.
PLoS Negl Trop Dis ; 17(7): e0011273, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498943

RESUMO

Rickettsia microorganisms are causative agents of several neglected emerging infectious diseases in humans transmitted by arthropods including ticks. In this study, ticks were collected from four geographical regions of Uganda and pooled in sizes of 1-179 ticks based on location, tick species, life stage, host, and time of collection. Then, they were tested by real-time PCR for Rickettsia species with primers targeting gltA, 17kDa and ompA genes, followed by Sanger sequencing of the 17kDa and ompA genes. Of the 471 tick pools tested, 116 (24.6%) were positive for Rickettsia spp. by the gltA primers. The prevalence of Rickettsia varied by district with Gulu recording the highest (30.1%) followed by Luwero (28.1%) and Kasese had the lowest (14%). Tick pools from livestock (cattle, goats, sheep, and pigs) had the highest positivity rate, 26.9%, followed by vegetation, 23.1%, and pets (dogs and cats), 19.7%. Of 116 gltA-positive tick pools, 86 pools were positive using 17kDa primers of which 48 purified PCR products were successfully sequenced. The predominant Rickettsia spp. identified was R. africae (n = 15) in four tick species, followed by R. conorii (n = 5) in three tick species (Haemaphysalis elliptica, Rhipicephalus appendiculatus, and Rh. decoloratus). Rickettsia conorii subsp. israelensis was detected in one tick pool. These findings indicate that multiple Rickettsia spp. capable of causing human illness are circulating in the four diverse geographical regions of Uganda including new strains previously known to occur in the Mediterranean region. Physicians should be informed about Rickettsia spp. as potential causes of acute febrile illnesses in these regions. Continued and expanded surveillance is essential to further identify and locate potential hotspots with Rickettsia spp. of concern.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodidae , Rhipicephalus , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Animais , Bovinos , Humanos , Cães , Ovinos , Gatos , Suínos , Uganda/epidemiologia , Israel , Rickettsia/genética , Ixodidae/microbiologia , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rhipicephalus/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Cabras
20.
J Wildl Dis ; 58(2): 269-278, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255126

RESUMO

Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum ß-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Animais , Antibacterianos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Genômica , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/veterinária , Pan troglodytes , Uganda/epidemiologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa