Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498409

RESUMO

Diabetic retinopathy (DR), one of the leading causes of blindness, is mainly diagnosed based on the vascular pathology of the disease. Current treatment options largely focus on this aspect with mostly insufficient therapeutic long-term efficacy. Mounting evidence implicates mitochondrial dysfunction and oxidative stress in the central etiology of DR. Consequently, drug candidates that aim at normalizing mitochondrial function could be an attractive therapeutic approach. This study compared the mitoprotective compounds, idebenone and elamipretide, side-by-side against two novel short-chain quinones (SCQs) in a rat model of DR. The model effectively mimicked type 2 diabetes over 21 weeks. During this period, visual acuity was monitored by measuring optokinetic response (OKR). Vision loss occurred 5-8 weeks after the onset of hyperglycemia. After 10 weeks of hyperglycemia, visual function was reduced by 65%. From this point, the right eyes of the animals were topically treated once daily with the test compounds. The left, untreated eye served as an internal control. Only three weeks of topical treatment significantly restored vision from 35% to 58-80%, while visual acuity of the non-treated eyes continued to deteriorate. Interestingly, the two novel SCQs restored visual acuity better than idebenone or elamipretide. This was also reflected by protection of retinal pathology against oxidative damage, retinal ganglion cell loss, reactive gliosis, vascular leakage, and retinal thinning. Overall, mitoprotective and, in particular, SCQ-based compounds have the potential to be developed into effective and fast-acting drug candidates against DR.


Assuntos
Antioxidantes/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Ratos , Ratos Long-Evans , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Visão Ocular
2.
J Neurosci Res ; 98(10): 1905-1932, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32557778

RESUMO

In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid ß impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB-APPSw.Ind , also known as J20 mice). PDGFB-APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60-P180 PDGFB-APPSw.Ind transgenic mice and, by performing whole-cell patch-clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB-APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB-APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB-APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.


Assuntos
Amiloidose/patologia , Encéfalo/patologia , Bainha de Mielina/patologia , Neurogênese/fisiologia , Oligodendroglia/patologia , Fatores Etários , Amiloidose/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética
3.
Acta Neuropathol ; 137(5): 731-755, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30535946

RESUMO

This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Inflamação/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Humanos , Inflamação/epidemiologia , Inflamação/terapia , Neuroimunomodulação
4.
Crit Care Med ; 46(4): 554-561, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29278529

RESUMO

OBJECTIVE: To determine profiles of serum ubiquitin carboxy-terminal hydrolase L1 and phosphorylated neurofilament heavy-chain, examine whether erythropoietin administration reduce their concentrations, and whether biomarkers discriminate between erythropoietin and placebo treatment groups. DESIGN: Single-center, prospective observational study. SETTING: A sub-study of the erythropoietin-traumatic brain injury clinical trial, conducted at the Alfred Hospital, Melbourne, Australia. PATIENTS: Forty-four patients with moderate-to-severe traumatic brain injury. INTERVENTIONS: Epoetin alfa 40,000 IU or 1 mL sodium chloride 0.9 as subcutaneous injection within 24 hours of traumatic brain injury. MEASUREMENTS AND MAIN RESULTS: Ubiquitin carboxy-terminal hydrolase L1, phosphorylated neurofilament heavy-chain, and erythropoietin concentrations were measured in serum by enzyme-linked immunosorbent assay from D0 (within 24 hr of injury, prior to erythropoietin/vehicle administration) to D5. Biomarker concentrations were compared between injury severities, diffuse versus focal traumatic brain injury and erythropoietin or placebo treatment groups. Ubiquitin carboxy-terminal hydrolase L1 peaked at 146.0 ng/mL on D0, significantly decreased to 84.30 ng/mL on D1, and declined thereafter. Phosphorylated neurofilament heavy-chain levels were lowest at D0 and peaked on D5 at 157.9 ng/mL. D0 ubiquitin carboxy-terminal hydrolase L1 concentrations were higher in diffuse traumatic brain injury. Peak phosphorylated neurofilament heavy-chain levels on D3 and D4 correlated with Glasgow Outcome Score-Extended, predicting poor outcome. Erythropoietin did not reduce concentrations of ubiquitin carboxy-terminal hydrolase L1 or phosphorylated neurofilament heavy-chain. CONCLUSIONS: Serum ubiquitin carboxy-terminal hydrolase L1 and phosphorylated neurofilament heavy-chain increase after traumatic brain injury reflecting early neuronal and progressive axonal injury. Consistent with lack of improved outcome in traumatic brain injury patients treated with erythropoietin, biomarker concentrations and profiles were not affected by erythropoietin. Pharmacokinetics of erythropoietin suggest that the dose given was possibly too low to exert neuroprotection.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Epoetina alfa/farmacologia , Epoetina alfa/uso terapêutico , Eritropoetina/sangue , Proteínas de Neurofilamentos/sangue , Ubiquitina Tiolesterase/efeitos dos fármacos , Adulto , Austrália , Biomarcadores , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Epoetina alfa/farmacocinética , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ubiquitina Tiolesterase/sangue
5.
Langmuir ; 30(29): 8898-906, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24979524

RESUMO

The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us.


Assuntos
Meios de Contraste/síntese química , Imageamento por Ressonância Magnética/métodos , Miristatos/química , Nanopartículas/química , Óxidos de Nitrogênio/química , Animais , Aorta/anatomia & histologia , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Eritrócitos/efeitos dos fármacos , Álcoois Graxos/química , Feminino , Glicerídeos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Baço/anatomia & histologia
6.
J Neuroinflammation ; 10: 156, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24344874

RESUMO

BACKGROUND: Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia. METHODS: Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12% O2) or normoxic ventilation, and were administered recombinant human EPO-α (5000 IU/kg) or saline at 1 and 24 hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests; 2) axonal pathology (NF-200); 3) callosal degradation (hematoxylin and eosin stain); 3) dendritic loss (MAP2); 4) expression and localisation of the EPO receptor (EpoR); 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1ß. RESULTS: EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI + Hx). A single dose of EPO at 1 hour reduced axonal damage in the white matter of TAI + Hx rats at 1 day by 60% compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI + Hx rats; however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1 day after TAI + Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1ß to sham levels 2 hours after TAI + Hx, concomitant to a decrease in CD68 positive cells at 7 and 14 days. CONCLUSIONS: When administered EPO, TAI + Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. These data provide compelling evidence of EPO's neuroprotective capability. Few benefits were observed when EPO was administered to TAI rats without hypoxia, indicating that EPO's neuroprotective capacity is bolstered under hypoxic conditions, which may be an important consideration when EPO is employed for neuroprotection in the clinic.


Assuntos
Lesões Encefálicas/patologia , Eritropoetina/farmacologia , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/metabolismo , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/patologia , Imuno-Histoquímica , Inflamação/patologia , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores da Eritropoetina/metabolismo , Regulação para Cima
7.
J Neurotrauma ; 40(1-2): 4-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880422

RESUMO

The identification of effective pharmacotherapies for traumatic brain injury (TBI) remains a major challenge. Treatment with heparin and its derivatives is associated with neuroprotective effects after experimental TBI; however, the optimal dosage and method of administration, modes of action, and effects on hemorrhage remain unclear. Therefore, this review aimed to systematically evaluate, analyze, and summarize the available literature on the use of heparin and low molecular weight heparins (LMWHs) as treatment options for experimental TBI. We searched two online databases (PubMed and ISI Web of Science) to identify relevant studies. Data pertaining to TBI paradigm, animal subjects, drug administration, and all pathological and behavior outcomes were extracted. Eleven studies met our pre-specified inclusion criteria, and for outcomes with sufficient numbers, data from seven publications were analyzed in a weighted mean difference meta-analysis using a random-effects model. Study quality and risk of bias were also determined. Meta-analysis revealed that heparin and its derivatives decreased brain edema, leukocyte rolling, and vascular permeability, and improved neurological function. Further, treatment did not aggravate hemorrhage. These findings must be interpreted with caution, however, because they were determined from a limited number of studies with substantial heterogeneity. Also, overall study quality was low based on absences of data reporting, and potential publication bias was identified. Importantly, we found that there are insufficient data to evaluate the variables we had hoped to investigate. The beneficial effects of heparin and LMWHs, however, suggest that further pre-clinical studies are warranted.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hemorragia/tratamento farmacológico , Heparina/toxicidade , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico
8.
Neurosignals ; 20(3): 132-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22456466

RESUMO

Brain injury following stroke or trauma induces the migration of neuroblasts derived from subventricular zone neural precursor cells (NPCs) towards the damaged tissue, where they then have the potential to contribute to repair. Enhancing the recruitment of new cells thus presents an enticing prospect for the development of new therapeutic approaches to treat brain injury; to this end, an understanding of the factors regulating this process is required. During the neuroinflammatory response to ischemic and traumatic brain injuries, a plethora of pro- and anti-inflammatory cytokines, chemokines and growth factors are released in the damaged tissue, and recent work indicates that a variety of these are able to influence injury-induced migration. In this review, we will discuss the contribution of specific chemokines and growth factors towards stimulating NPC migration in the injured brain.


Assuntos
Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Movimento Celular/fisiologia , Inflamação/patologia , Neurônios/citologia , Animais , Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/fisiopatologia , Inflamação/fisiopatologia , Neurogênese/fisiologia , Neurônios/fisiologia
9.
J Neurosci Res ; 89(7): 986-1000, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21488090

RESUMO

Although increased neurogenesis has been described in rodent models of focal traumatic brain injury (TBI), the neurogenic response occurring after diffuse TBI uncomplicated by focal injury has not been examined to date, despite the pervasiveness of this distinct type of brain injury in the TBI patient population. Here we characterize multiple stages of neurogenesis following a traumatic axonal injury (TAI) model of diffuse TBI as well as the proliferative response of glial cells. TAI was induced in adult rats using an impact-acceleration model, and 5-bromo-2'-deoxyuridine (BrdU) was administered on days 1-4 posttrauma or sham operation to label mitotic cells. Using immunohistochemistry for BrdU combined with phenotype-specific markers, we found that proliferation was increased following TAI in the subventricular zone of the lateral ventricles and in the hippocampal subgranular zone, although the ultimate production of new dentate granule neurons at 8 weeks was not significantly enhanced. Also, abundant proliferating and reactive astrocytes, microglia, and polydendrocytes were detected throughout the brain following TAI, indicating that a robust glial response occurs in this model, although very few new cells in the nonneurogenic brain regions became mature neurons. We conclude that diffuse brain injury stimulates early stages of a neurogenic response similar to that described for models of focal TBI.


Assuntos
Astrócitos/patologia , Lesões Encefálicas/patologia , Proliferação de Células , Microglia/patologia , Neurogênese/fisiologia , Fatores Etários , Animais , Astrócitos/citologia , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Gliose/etiologia , Gliose/patologia , Masculino , Microglia/citologia , Regeneração Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley
10.
Neurobiol Dis ; 40(2): 394-403, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20621186

RESUMO

The contribution of infiltrated neutrophils to secondary damage following traumatic brain injury remains controversial. Chemokines that regulate neutrophil migration by signaling through the CXCR2 receptor are markedly elevated by brain injury and are associated with the propagation of secondary damage. This study thus investigated the function of CXCR2 in posttraumatic inflammation and secondary degeneration by examining Cxcr2-deficient (Cxcr2(-/-)) mice over 14 days following closed head injury (CHI). We demonstrate a significant attenuation of neutrophil infiltration in Cxcr2(-/-) mice at 12 hours and 7 days after CHI, despite increased levels of CXC neutrophil-attracting chemokines in the lesioned cortex. This coincides with reduced tissue damage, neuronal loss, and cell death in Cxcr2(-/-) mice compared to wild-type controls, with heterozygotes showing intermediate responses. In contrast, blood-brain barrier permeability and functional recovery did not appear to be affected by Cxcr2 deletion. This study highlights the deleterious contribution of neutrophils to posttraumatic neurodegeneration and demonstrates the importance of CXC chemokine signaling in this process. Therefore, CXCR2 antagonistic therapeutics currently in development for other inflammatory conditions may also be of benefit in posttraumatic neuroinflammation.


Assuntos
Córtex Cerebral/imunologia , Traumatismos Cranianos Fechados/imunologia , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina-8B/deficiência , Fatores Etários , Animais , Barreira Hematoencefálica/patologia , Morte Celular , Córtex Cerebral/patologia , Quimiocinas/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Traumatismos Cranianos Fechados/patologia , Heterozigoto , Homozigoto , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Interleucina-8B/genética , Recuperação de Função Fisiológica
11.
J Neurotrauma ; 37(5): 782-791, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046575

RESUMO

Traumatic brain injury (TBI) can cause persistent cognitive changes and ongoing neurodegeneration in the brain. Accumulating epidemiological and pathological evidence implicates TBI in the development of Alzheimer's disease, the most common cause of dementia. Further, the TBI-induced form of dementia, called chronic traumatic encephalopathy, shares many pathological hallmarks present in multiple different diseases which cause dementia. The inflammatory and neuritic responses to TBI and dementia overlap, indicating that they may share common pathological mechanisms and that TBI may ultimately cause a pathological cascade culminating in the development of dementia. This review explores Australian pre-clinical research investigating the pathological links between TBI and dementia.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Demência/patologia , Animais , Austrália , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Demência/etiologia , Demência/metabolismo , Humanos , Microglia/metabolismo , Microglia/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Proteínas tau/metabolismo
12.
J Neurosci ; 26(27): 7234-44, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16822981

RESUMO

Understanding the transcriptional response to neuronal injury after trauma is a necessary prelude to formulation of therapeutic strategies. We used Serial Analysis of Gene Expression (SAGE) to identify 50,000 sequence tags representing 18,000 expressed genes in the cortex 2 h after traumatic brain injury (TBI). A similar tag library was obtained from sham-operated cortex. The SAGE data were validated on biological replicates using quantitative real-time-PCR on multiple samples at 2, 6, 12, and 24 h after TBI. This analysis revealed that the vast majority of genes showed a downward trend in their pattern of expression over 24 h. This was confirmed for a subset of genes using in situ hybridization and immunocytochemistry on brain sections. Of the overexpressed genes in the trauma library, Nedd4-WW (neural precursor cell expressed, developmentally downregulated) domain-binding protein 5 (N4WBP5) (also known as Ndfip1) is strongly expressed in surviving neurons around the site of injury. Overexpression of N4WBP5 in cultured cortical neurons increased the number of surviving neurons after gene transfection and growth factor starvation compared with control transfections. These results identify N4WBP5 as a neuroprotective protein and, based on its known interaction with the ubiquitin ligase Nedd4, would suggest protein ubiquitination as a possible survival strategy in neuronal injury.


Assuntos
Lesões Encefálicas/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Lesões Encefálicas/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebral/lesões , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/farmacologia , Neurônios/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina/metabolismo , Regulação para Cima/genética
13.
PLoS One ; 12(11): e0188305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176798

RESUMO

The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI). As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine expression, macrophage activation, brain pathology, and neurological recovery at later time-points is minor. Concordant to evidence in multiple sclerosis experimental models, our data corroborate a distinct role for ACKR2 in cerebral inflammatory processes compared to its reported functions in peripheral tissues.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/mortalidade , Receptores de Quimiocinas/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Osso e Ossos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/fisiopatologia , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Deleção de Genes , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Mortalidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/genética , Recuperação de Função Fisiológica , Regulação para Cima/genética
14.
Mater Sci Eng C Mater Biol Appl ; 71: 584-593, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987748

RESUMO

Engineered nanoparticles with multiple complementary imaging modalities are of great benefit to the rapid treatment and diagnosis of disease in various organs. Herein, we report the formulation of cubosomes and hexosomes that carry multiple amphiphilic imaging contrast agents in their self-assembled lipid bilayers. This is the first report of the use of both near infrared fluorescent (NIRF) imaging and gadolinium lipid based magnetic resonance (MR) imaging modalities in cubosomes and hexosomes. High-throughput screening was used to rapidly optimize formulations with desirable nano-architectures and low in vitro cytotoxicity. The dual-modal imaging nanoparticles in vivo biodistribution and organ specific contrast enhancement were then studied. The NIRF in vivo imaging results indicated accumulation of both cubosomes and hexosomes in the liver and spleen of mice up to 20h post-injection. Remarkably, the biodistribution of the nanoparticle formulations was affected by the mesophase (i.e. cubic or hexagonal), a finding of significant importance for the future use of these compounds, with hexosomes showing higher accumulation in the spleen than the liver compared to cubosomes. Furthermore, in vivo MRI data of animals injected with either type of lyotropic liquid crystal nanoparticle displayed enhanced contrast in the liver and spleen.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Nanopartículas/química , Imagem Óptica , Animais , Células CHO , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Cricetulus , Humanos , Masculino , Camundongos , Células U937
15.
J Neurotrauma ; 23(9): 1283-94, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16958581

RESUMO

Activin A is a member of the transforming growth factor-beta superfamily and has been demonstrated to be elevated during inflammation and to have neuroprotective properties following neural insults. In this study, we examined whether traumatic brain injury (TBI) induced a response in activin A or in the concentrations of its binding protein, follistatin. Thirty-nine patients with severe TBI had daily, matched cerebrospinal fluid (CSF) and serum samples collected post-TBI and these were assayed for activin A and follistatin using specific immunoassays. Concentrations of both molecules were assessed relative to a variety of clinical parameters, such as the Glasgow Coma Score, computer tomography classification of TBI, measurement of injury markers, cell metabolism and membrane breakdown products. In about half of the patients, there was a notable increase in CSF activin A concentrations in the first few days post-TBI. There were only minor perturbations in either serum activin or in either CSF or serum follistatin concentrations. The CSF activin A response was not related to any of the common TBI indices, but was strongly correlated with two common markers of brain damage, neuronal specific enolase and S100-beta. Further, activin A levels were also associated with indices of metabolism, such as lactate and pyruvate, excitotoxicity (glutamate) and membrane lipid breakdown products such as glycerol. In one of the two patients who developed a CSF infection, activin A concentrations in CSF became markedly elevated. Thus, some TBI patients have an early release of activin A into the CSF that may result from activation of inflammatory and/or neuroprotective pathways.


Assuntos
Ativinas/sangue , Ativinas/líquido cefalorraquidiano , Lesões Encefálicas/sangue , Lesões Encefálicas/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Lesões Encefálicas/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Folistatina/sangue , Folistatina/líquido cefalorraquidiano , Ácido Glutâmico/sangue , Ácido Glutâmico/líquido cefalorraquidiano , Glicerol/sangue , Glicerol/líquido cefalorraquidiano , Humanos , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Fatores de Crescimento Neural/sangue , Fatores de Crescimento Neural/líquido cefalorraquidiano , Fosfopiruvato Hidratase/sangue , Fosfopiruvato Hidratase/líquido cefalorraquidiano , Ácido Pirúvico/sangue , Ácido Pirúvico/líquido cefalorraquidiano , Radiografia , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/sangue , Proteínas S100/líquido cefalorraquidiano , Índices de Gravidade do Trauma
16.
PLoS One ; 11(4): e0153418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27071013

RESUMO

Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Microglia/patologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Astrócitos/patologia , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/metabolismo , Proliferação de Células , Giro Denteado/patologia , Eritropoetina/metabolismo , Feminino , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Neurogênese , Prognóstico , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Tempo
17.
Exp Neurol ; 279: 86-95, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896832

RESUMO

Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury.


Assuntos
Amidas/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Neurite (Inflamação)/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/patologia , Lesões Encefálicas/psicologia , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurite (Inflamação)/patologia , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Piridinas/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Resultado do Tratamento
18.
Neurochem Int ; 96: 62-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26930584

RESUMO

Autophagy is a homeostatic process for recycling proteins and organelles that is increasingly being proposed as a therapeutic target for acute and chronic neurodegenerative diseases, including stroke. Confirmation that autophagy is present in the human brain after stroke is imperative before prospective therapies can begin the translational process into clinical trials. Our current study using human post-mortem tissue observed an increase in staining in microtubule-associated protein 1 light chain 3 (LC3), sequestosome 1 (SQSTM1; also known as p62) and the increased appearance of autophagic vesicles after stroke. These data confirm that alterations in autophagy take place in the human brain after stroke and suggest that targeting autophagic processes after stroke may have clinical significance.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/biossíntese , Encéfalo/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Proteína Sequestossoma-1/biossíntese , Acidente Vascular Cerebral/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteína Beclina-1/análise , Encéfalo/patologia , Química Encefálica/fisiologia , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/análise , Proteína Sequestossoma-1/análise , Acidente Vascular Cerebral/patologia
19.
PLoS One ; 10(3): e0121541, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798924

RESUMO

Oligodendrocytes are responsible for producing and maintaining myelin throughout the CNS. One of the pathological features observed following traumatic brain injury (TBI) is the progressive demyelination and degeneration of axons within white matter tracts. While the effect of TBI on axonal health has been well documented, there is limited information regarding the response of oligodendrocytes within these areas. The aim of this study was to characterize the response of both mature oligodendrocytes and immature proliferative oligodendrocyte lineage cells across a 3 month timecourse following TBI. A computer-controlled cortical impact model was used to produce a focal lesion in the left motor cortex of adult mice. Immunohistochemical analyses were performed at 48 hours, 7 days, 2 weeks, 5 weeks and 3 months following injury to assess the prevalence of mature CC-1+ oligodendrocyte cell death, immature Olig2+ cell proliferation and longer term survival in the corpus callosum and external capsule. Decreased CC-1 immunoreactivity was observed in white matter adjacent to the site of injury from 2 days to 2 weeks post TBI, with ongoing mature oligodendrocyte apoptosis after this time. Conversely, proliferation of Olig2+ cells was observed as early as 48 hours post TBI and significant numbers of these cells and their progeny survived and remained in the external capsule within the injured hemisphere until at least 3 months post injury. These findings demonstrate that immature oligodendrocyte lineage cells respond to TBI by replacing oligodendrocytes lost due to damage and that this process occurs for months after injury.


Assuntos
Lesões Encefálicas/patologia , Oligodendroglia/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morte Celular , Linhagem da Célula , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/metabolismo
20.
J Cereb Blood Flow Metab ; 24(10): 1110-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15529011

RESUMO

The potential role of the chemokine Fractalkine (CX3CL1) in the pathophysiology of traumatic brain injury (TBI) was investigated in patients with head trauma and in mice after experimental cortical contusion. In control individuals, soluble (s)Fractalkine was present at low concentrations in cerebrospinal fluid (CSF) (12.6 to 57.3 pg/mL) but at much higher levels in serum (21,288 to 74,548 pg/mL). Elevation of sFractalkine in CSF of TBI patients was observed during the whole study period (means: 29.92 to 535.33 pg/mL), whereas serum levels remained within normal ranges (means: 3,100 to 59,159 pg/mL). Based on these differences, a possible passage of sFractalkine from blood to CSF was supported by the strong correlation between blood-brain barrier dysfunction (according to the CSF-/serum-albumin quotient) and sFractalkine concentrations in CSF (R = 0.706; P < 0.01). In the brain of mice subjected to closed head injury, neither Fractalkine protein nor mRNA were found to be augmented; however, Fractalkine receptor (CX3CR1) mRNA steadily increased peaking at 1 week postinjury (P < 0.05, one-way analysis of variance). This possibly implies the receptor to be the key factor determining the action of constitutively expressed Fractalkine. Altogether, these data suggest that the Fractalkine-CX3CR1 protein system may be involved in the inflammatory response to TBI, particularly for the accumulation of leukocytes in the injured parenchyma.


Assuntos
Lesões Encefálicas/metabolismo , Quimiocinas CX3C/líquido cefalorraquidiano , Traumatismos Cranianos Fechados/metabolismo , Proteínas de Membrana/líquido cefalorraquidiano , Adolescente , Adulto , Animais , Barreira Hematoencefálica , Lesões Encefálicas/imunologia , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Quimiocinas CX3C/sangue , Quimiocinas CX3C/genética , Modelos Animais de Doenças , Feminino , Traumatismos Cranianos Fechados/imunologia , Humanos , Leucócitos/imunologia , Masculino , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Receptores de Citocinas/genética , Receptores de HIV/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa