Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 160(4): 1359-1372.e13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307028

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinomas (PDACs) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule CDH11, which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. METHODS: We compared levels of CDH11 messenger RNA in human pancreatitis and pancreatic cancer tissues and cells with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11-/- mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. RESULTS: Levels of CDH11 messenger RNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/- and KPC/Cdh11-/- mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/- and KPC/Cdh11-/- mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh11+/- mice had increased markers of antigen processing and presentation; more lymphocytes and associated cytokines; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival of KPC/Cdh11+/- and KPC/Cdh11-/- mice only or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice when given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. CONCLUSIONS: Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.


Assuntos
Caderinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/imunologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/imunologia , Animais , Caderinas/antagonistas & inibidores , Caderinas/genética , Fibroblastos Associados a Câncer/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metalotioneína 3 , Camundongos , Camundongos Knockout , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Gencitabina
2.
Ecotoxicol Environ Saf ; 233: 113330, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189517

RESUMO

Environmental chemical (EC) exposures and our interactions with them has significantly increased in the recent decades. Toxicity associated biological characterization of these chemicals is challenging and inefficient, even with available high-throughput technologies. In this report, we describe a novel computational method for characterizing toxicity, associated biological perturbations and disease outcome, called the Chemo-Phenotypic Based Toxicity Measurement (CPTM). CPTM is used to quantify the EC "toxicity score" (Zts), which serves as a holistic metric of potential toxicity and disease outcome. CPTM quantitative toxicity is the measure of chemical features, biological phenotypic effects, and toxicokinetic properties of the ECs. For proof-of-concept, we subject ECs obtained from the Environmental Protection Agency's (EPA) database to the CPTM. We validated the CPTM toxicity predictions by correlating 'Zts' scores with known toxicity effects. We also confirmed the CPTM predictions with in-vitro, and in-vivo experiments. In in-vitro and zebrafish models, we showed that, mixtures of the motor oil and food additive 'Salpn' with endogenous nuclear receptor ligands such as Vitamin D3, dysregulated the nuclear receptors and key transcription pathways involved in Colorectal Cancer. Further, in a human patient derived cell organoid model, we found that a mixture of the widely used pesticides 'Tetramethrin' and 'Fenpropathrin' significantly impacts the population of patient derived pancreatic cancer cells and 3D organoid models to support rapid PDAC disease progression. The CPTM method is, to our knowledge, the first comprehensive toxico-physicochemical, and phenotypic bionetwork-based platform for efficient high-throughput screening of environmental chemical toxicity, mechanisms of action, and connection to disease outcomes.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Praguicidas , Animais , Colecalciferol , Humanos , Praguicidas/toxicidade , Peixe-Zebra
3.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499162

RESUMO

Electrostatic interactions drive biomolecular interactions and associations. Computational modeling of electrostatics in biomolecular systems, such as protein-ligand, protein-protein, and protein-DNA, has provided atomistic insights into the binding process. In drug discovery, finding biologically plausible ligand-protein target interactions is challenging as current virtual screening and adjuvant techniques such as docking methods do not provide optimal treatment of electrostatic interactions. This study describes a novel electrostatics-driven virtual screening method called 'ES-Screen' that performs well across diverse protein target systems. ES-Screen provides a unique treatment of electrostatic interaction energies independent of total electrostatic free energy, typically employed by current software. Importantly, ES-Screen uses initial ligand pose input obtained from a receptor-based pharmacophore, thus independent of molecular docking. ES-Screen integrates individual polar and nonpolar replacement energies, which are the energy costs of replacing the cognate ligand for a target with a query ligand from the screening. This uniquely optimizes thermodynamic stability in electrostatic and nonpolar interactions relative to an experimentally determined stable binding state. ES-Screen also integrates chemometrics through shape and other physicochemical properties to prioritize query ligands with the greatest physicochemical similarities to the cognate ligand. The applicability of ES-Screen is demonstrated with in vitro experiments by identifying novel targets for many drugs. The present version includes a combination of many other descriptor components that, in a future version, will be purely based on electrostatics. Therefore, ES-Screen is a first-in-class unique electrostatics-driven virtual screening method with a unique implementation of replacement electrostatic interaction energies with broad applicability in drug discovery.


Assuntos
Descoberta de Drogas , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Eletricidade Estática
4.
BMC Bioinformatics ; 17(1): 202, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151405

RESUMO

BACKGROUND: The targeting of disease-related proteins is important for drug discovery, and yet target-based discovery has not been fruitful. Contextualizing overall biological processes is critical to formulating successful drug-disease hypotheses. Network pharmacology helps to overcome target-based bottlenecks through systems biology analytics, such as protein-protein interaction (PPI) networks and pathway regulation. RESULTS: We present a systems polypharmacology platform entitled DrugGenEx-Net (DGE-NET). DGE-NET predicts empirical drug-target (DT) interactions, integrates interaction pairs into a multi-tiered network analysis, and ultimately predicts disease-specific drug polypharmacology through systems-based gene expression analysis. Incorporation of established biological network annotations for protein target-disease, -signaling pathway, -molecular function, and protein-protein interactions enhances predicted DT effects on disease pathophysiology. Over 50 drug-disease and 100 drug-pathway predictions are validated. For example, the predicted systems pharmacology of the cholesterol-lowering agent ezetimibe corroborates its potential carcinogenicity. When disease-specific gene expression analysis is integrated, DGE-NET prioritizes known therapeutics/experimental drugs as well as their contra-indications. Proof-of-concept is established for immune-related rheumatoid arthritis and inflammatory bowel disease, as well as neuro-degenerative Alzheimer's and Parkinson's diseases. CONCLUSIONS: DGE-NET is a novel computational method that predicting drug therapeutic and counter-therapeutic indications by uniquely integrating systems pharmacology with gene expression analysis. DGE-NET correctly predicts various drug-disease indications by linking the biological activity of drugs and diseases at multiple tiers of biological action, and is therefore a useful approach to identifying drug candidates for re-purposing.


Assuntos
Biologia Computacional/métodos , Interações Medicamentosas , Reposicionamento de Medicamentos , Regulação da Expressão Gênica , Software , Biologia de Sistemas/métodos , Bases de Dados como Assunto , Doença , Humanos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Reprodutibilidade dos Testes
5.
Hepatology ; 61(2): 598-612, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25307947

RESUMO

UNLABELLED: ßII-Spectrin (SPTBN1) is an adapter protein for Smad3/Smad4 complex formation during transforming growth factor beta (TGF-ß) signal transduction. Forty percent of SPTBN1(+/-) mice spontaneously develop hepatocellular carcinoma (HCC), and most cases of human HCC have significant reductions in SPTBN1 expression. In this study, we investigated the possible mechanisms by which loss of SPTBN1 may contribute to tumorigenesis. Livers of SPTBN1(+/-) mice, compared to wild-type mouse livers, display a significant increase in epithelial cell adhesion molecule-positive (EpCAM(+)) cells and overall EpCAM expression. Inhibition of SPTBN1 in human HCC cell lines increased the expression of stem cell markers EpCAM, Claudin7, and Oct4, as well as decreased E-cadherin expression and increased expression of vimentin and c-Myc, suggesting reversion of these cells to a less differentiated state. HCC cells with decreased SPTBN1 also demonstrate increased sphere formation, xenograft tumor development, and invasion. Here we investigate possible mechanisms by which SPTBN1 may influence the stem cell traits and aggressive behavior of HCC cell lines. We found that HCC cells with decreased SPTBN1 express much less of the Wnt inhibitor kallistatin and exhibit decreased ß-catenin phosphorylation and increased ß-catenin nuclear localization, indicating Wnt signaling activation. Restoration of kallistatin expression in these cells reversed the observed Wnt activation. CONCLUSION: SPTBN1 expression in human HCC tissues is positively correlated with E-cadherin and kallistatin levels, and decreased SPTBN1 and kallistatin gene expression is associated with decreased relapse-free survival. Our data suggest that loss of SPTBN1 activates Wnt signaling, which promotes acquisition of stem cell-like features, and ultimately contributes to malignant tumor progression.


Assuntos
Carcinoma Hepatocelular/etiologia , Proteínas de Transporte/metabolismo , Neoplasias Hepáticas/etiologia , Proteínas dos Microfilamentos/metabolismo , Recidiva Local de Neoplasia/metabolismo , Serpinas/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Moléculas de Adesão Celular/metabolismo , Molécula de Adesão da Célula Epitelial , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Camundongos Nus , Vimentina/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
6.
J Virol ; 86(17): 9465-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22740411

RESUMO

The high-risk human papillomavirus type 16 (HPV-16) E5 protein (16E5) induces tumors in a transgenic mouse model and may contribute to early stages of cervical carcinogenesis. Although high-risk E5 expression is generally thought to be lost during the progression to cervical carcinoma following integration of HPV DNA into the host genome, episomal viral DNA has been documented in a subset of HPV-16-positive malignant lesions. Numerous studies have shown that transcripts that could potentially encode 16E5 are present in cervical biopsy specimens and cervical cancer cell lines, but the presence of E5 protein has been demonstrated in only two reports that have not been corroborated. In the present study, we show that trypsin cleavage of 16E5 generates a unique four-amino-acid C-terminal peptide (FLIT) that serves as a marker for E5 expression in transfected cells and epithelial cell lines containing integrated and episomal HPV-16 DNA. Following trypsin cleavage, reversed-phase chromatography and mass spectrometry (MS) were used to detect FLIT. Immunoprecipitation assays using a newly generated anti-16E5 antibody confirmed that 16E5 was solely responsible for the FLIT signal, and deuterated FLIT peptide provided an internal standard that enabled us to quantify the number of 16E5 molecules per cell. We show that 16E5 is expressed in the Caski but not in the SiHa cervical cancer cell line, suggesting that 16E5 may contribute to the malignant phenotype of some cervical cancers, even in cells exclusively containing an integrated HPV genome.


Assuntos
Células Epiteliais/química , Papillomavirus Humano 16/química , Proteínas Oncogênicas Virais/análise , Sequência de Aminoácidos , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Espectrometria de Massas/métodos , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Mapeamento de Peptídeos , Neoplasias do Colo do Útero/química , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
7.
Front Oncol ; 13: 1286861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954069

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the top five deadliest forms of cancer with very few treatment options. The 5-year survival rate for PDAC is 10% following diagnosis. Cadherin 11 (Cdh11), a cell-to-cell adhesion molecule, has been suggested to promote tumor growth and immunosuppression in PDAC, and Cdh11 inhibition significantly extended survival in mice with PDAC. However, the mechanisms by which Cdh11 deficiency influences PDAC progression and anti-tumor immune responses have yet to be fully elucidated. To investigate Cdh11-deficiency induced changes in PDAC tumor microenvironment (TME), we crossed p48-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ (KPC) mice with Cdh11+/- mice and performed single-cell RNA sequencing (scRNA-seq) of the non-immune (CD45-) and immune (CD45+) compartment of KPC tumor-bearing Cdh11 proficient (KPC-Cdh11+/+) and Cdh11 deficient (KPC-Cdh11+/-) mice. Our analysis showed that Cdh11 is expressed primarily in cancer-associated fibroblasts (CAFs) and at low levels in epithelial cells undergoing epithelial-to-mesenchymal transition (EMT). Cdh11 deficiency altered the molecular profile of CAFs, leading to a decrease in the expression of myofibroblast markers such as Acta2 and Tagln and cytokines such as Il6, Il33 and Midkine (Mdk). We also observed a significant decrease in the presence of monocytes/macrophages and neutrophils in KPC-Cdh11+/- tumors while the proportion of T cells was increased. Additionally, myeloid lineage cells from Cdh11-deficient tumors had reduced expression of immunosuppressive cytokines that have previously been shown to play a role in immune suppression. In summary, our data suggests that Cdh11 deficiency significantly alters the fibroblast and immune microenvironments and contributes to the reduction of immunosuppressive cytokines, leading to an increase in anti-tumor immunity and enhanced survival.

8.
J Proteome Res ; 11(3): 1913-23, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22296162

RESUMO

Tubulin-α(1A/1B) C-terminal tail (CTT) has seven glutamic acid residues among the last 11 amino acids of its sequence that are potential sites for glutamylation. Cleavage of C-terminal tyrosine resulting in the detyrosinated form of tubulin-α(1A/1B) is another major modification. These modifications among others bring about highly heterogeneous tubulin samples in brain cells and microtubules, play a major role in directing intracellular trafficking, microtubule dynamics, and mitotic events, and can vary depending on the cell and disease state, such as cancer and neurodegenerative disorders. Identified previously using primary mass spectrometry (MS) ions and partial Edman sequencing, tubulin-α(1A/1B) glutamylation was found exclusively on the E(445) residue. We here describe the analysis of tubulin-α(1A/1B) glutamylation and detyrosination after 2-DE separation, trypsin and proteinase K in-gel digestion, and nanoUPLC-ESI-QqTOF-MS/MS of mouse brain and bovine microtubules. Tyrosinated, detyrosinated, and Δ2-tubulin-α(1A/1B) CTTs were identified on the basis of a comparison of fragmentation patterns and retention times between endogenous and synthetic peptides. Stringent acceptance criteria were adapted for the identification of novel glutamylation sites. In addition to the previously identified site at E(445), glutamylation on mouse and bovine tubulin-α(1A/1B) CTTs was identified on E(441) and E(443) with MASCOT Expect values below 0.01. O-Methylation of glutamates was also observed.


Assuntos
Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Bovinos , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteólise , Espectrometria de Massas em Tandem , Tubulina (Proteína)/química , Tirosina/química , Tirosina/metabolismo
9.
Rev Endocr Metab Disord ; 13(1): 31-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21861107

RESUMO

Vitamin D and its analogs are potent inhibitors of colorectal cancer growth and metastasis. A number of recent studies have defined the intersections between the ß-catenin-TCF pathway (a known contributor to colorectal cancer progression) and the vitamin D receptor (VDR) pathway, shedding light on the underlying mechanisms. Vitamin D also regulates the innate immune response, and as such influences susceptibility to inflammatory bowel disease, a predisposing factor in colorectal cancer. Understanding the role of vitamin D in these different contexts will enable development of next generation vitamin D analogs that will serve as both chemopreventatives and cancer therapeutics, without the accompanying side effects of hypercalcemia usually associated with high vitamin D intake. This review summarizes the mechanisms of action of vitamin D and the VDR in the context of the gastrointestinal tract and colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Animais , Humanos , beta Catenina/metabolismo
10.
Int J Biol Sci ; 18(7): 2670-2682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541897

RESUMO

Retinoic acid receptor responder 1 (RARRES1) is among the most commonly methylated loci in multiple cancers. RARRES1 regulates mitochondrial and fatty acid metabolism, stem cell differentiation, and survival of immortalized cell lines in vitro. Here, we created constitutive Rarres1 knockout (Rarres1-/-) mouse models to study RARRES1 function in vivo. Rarres1-/- embryonic fibroblasts regulated tubulin glutamylation, cell metabolism, and survival, recapitulating RARRES1 function in immortalized cell lines. In two mouse strains, loss of Rarres1 led to a markedly increased dose-dependent incidence of follicular lymphoma (FL). Prior to lymphoma formation, Rarres1-/- B cells have compromised activation, maturation, differentiation into antibody-secreting plasma cells, and cell cycle progression. Rarres1 ablation increased B cell survival and led to activation of the unfolded protein response (UPR) and heat shock response (HSR). Rarres1 deficiency had differential effects on cellular metabolism, with increased bioenergetic capacity in fibroblasts, and minor effects on bioenergetics and metabolism in B cells. These findings reveal that RARRES1 is a bona fide tumor suppressor in vivo and the deletion in mice promotes cell survival, and reduces B cell differentiation with B cell autonomous and non-autonomous functions.


Assuntos
Genes Supressores de Tumor , Proteínas de Membrana , Animais , Diferenciação Celular/genética , Linhagem Celular , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Camundongos
11.
J Biol Chem ; 285(1): 317-27, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19858186

RESUMO

Activation of the Wnt/beta-catenin and retinoid signaling pathways is known to tilt cartilage matrix homeostasis toward catabolism. Here, we investigated possible interactions between these pathways. We found that all-trans-retinoic acid (RA) treatment of mouse epiphyseal chondrocytes in culture did increase Wnt/beta-catenin signaling in the absence or presence of exogenous Wnt3a, as revealed by lymphoid enhancer factor/T-cell factor/beta-catenin reporter activity and beta-catenin nuclear accumulation. This stimulation was accompanied by increased gene expression of Wnt proteins and receptors and was inhibited by co-treatment with Dickkopf-related protein-1, an extracellular inhibitor of Wnt/beta-catenin signaling, suggesting that RA modulates Wnt signaling at Wnt cell surface receptor level. RA also enhanced matrix loss triggered by Wnt/beta-catenin signaling, whereas treatment with a retinoid antagonist reduced it. Interestingly, overexpression of retinoic acid receptor gamma (RARgamma) strongly inhibited Wnt/beta-catenin signaling in retinoid-free cultures, whereas small interfering RNA-mediated silencing of endogenous RARgamma expression strongly increased it. Small interfering RNA-mediated silencing of RARalpha or RARbeta had minimal effects. Co-immunoprecipitation and two-hybrid assays indicated that RARgamma interacts with beta-catenin and induces dissociation of beta-catenin from lymphoid enhancer factor in retinoid-free cultures. The N-terminal domain (AF-1) of RARgamma but not the C-terminal domain (AF-2) was required for association with beta-catenin, whereas both AF-1 and AF-2 were necessary for inhibition of beta-catenin transcriptional activity. Taken together, our data indicate that the Wnt and retinoid signaling pathways do interact in chondrocytes, and their cross-talks and cross-regulation play important roles in the regulation of cartilage matrix homeostasis.


Assuntos
Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Condrócitos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/agonistas , Tretinoína/antagonistas & inibidores , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Receptor gama de Ácido Retinoico
12.
Crit Rev Eukaryot Gene Expr ; 21(3): 207-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22111711

RESUMO

Wnt signaling controls cell specification and fate during development and adult tissue homeostasis by converging on a small family of DNA binding factors, the T-cell factor/lymphoid enhancer factor (TCF/LEF) family. In response to Wnt signals, TCF/LEF members undergo a transcriptional switch from repression to activation mediated in part by nuclear ß-catenin binding and recruitment of co-activator complexes. In mammals, the specificity and fine tuning of this transcriptional switch is also achieved by the cell-context-dependent expression of four members (TCF7, TCF7L1, TCF7L2, and LEF1) and numerous variants, which display differential DNA binding affinity and specificity, repression strength, activation potential, and regulators. TCF7/LEF1 variants are generated by alternative promoters, alternative exon cassettes, and alternative donor/acceptor splicing sites, allowing combinatorial insertion/exclusion of modular functional and regulatory domains. In this review we present mounting evidence for the interdependency of TCF7/LEF1 variant expression and functions with cell lineage and cell state. We also illustrate how the p53 and nuclear receptor family of transcription factors, known to control cell fate and to inhibit Wnt signaling, may participate in the fine tuning of TCF7/LEF1 repression/activation potentials.


Assuntos
Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Processamento Alternativo , Animais , Expressão Gênica , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/química , Mamíferos/embriologia , Mamíferos/metabolismo , Neoplasias/metabolismo , Fator 1 de Transcrição de Linfócitos T/química , Fatores de Transcrição TCF/química , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt
13.
J Biomed Biotechnol ; 2011: 723650, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21976967

RESUMO

Research efforts were focused on genetic alterations in epithelial cancer cells. Epithelial-stromal interactions play a crucial role in cancer initiation, progression, invasion, angiogenesis, and metastasis; however, the active role of stroma in human breast tumorigenesis in relation to estrogen receptor (ER) status of epithelial cells has not been explored. Using proteomics and biochemical approaches, we identified two stromal proteins in ER-positive and ER-negative human breast cancer tissues that may affect malignant transformation in breast cancer. Two putative biomarkers, T-cell receptor alpha (TCR-α) and zinc finger and BRCA1-interacting protein with a KRAB domain (ZBRK1), were detected in leukocytes of ER-positive and endothelial cells of ER-negative tissues, respectively. Our data suggest an immunosuppressive role of leukocytes in invasive breast tumors, propose a multifunctional nature of ZBRK1 in estrogen receptor regulation and angiogenesis, and demonstrate the aggressiveness of ER-negative human breast carcinomas. This research project may identify new stromal drug targets for the treatment of breast cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Western Blotting , Neoplasias da Mama/patologia , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Leucócitos/metabolismo , Miofibroblastos/metabolismo , Fenótipo , Proteômica/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Estrogênio/biossíntese , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo , Espectrometria de Massas em Tandem
14.
Exp Cell Res ; 316(11): 1763-72, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20138864

RESUMO

Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.


Assuntos
Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Espaço Extracelular/metabolismo , Humanos , Técnicas In Vitro , Masculino , Modelos Biológicos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor Cross-Talk , Receptores Androgênicos/metabolismo , beta Catenina/metabolismo
15.
Int J Mol Sci ; 12(7): 4504-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21845093

RESUMO

Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER), progesterone receptor (PR), and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self-renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Citoesqueleto/metabolismo , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo
16.
Biochem Biophys Res Commun ; 399(2): 245-50, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20654575

RESUMO

TCF7L2 transcription factor is a downstream effector of the canonical Wnt/beta-catenin signaling, which controls cell fate and homeostasis. However, the complexity of TCF7L2 expression with numerous mRNA isoforms coding for proteins with distinct N- and C-termini allows variability in TCF7L2 functions and regulations. Here, we show that although TCF7L2 mRNA isoforms distinguish fetal, immortalized and adult differentiated endothelial cells (EC), they cannot explain the lack of significant beta-catenin/TCF7 activities in ECs. Lithium, a Wnt-signaling activator, increases TCF7L2 mRNA levels and induces an RNA isoform switch favoring the expression of TCF7L2-short forms lacking the C-termini domains. Although the latter occurs in different cell types, its extent depends on the overall increase of TCF7L2 transcription, which correlates with cell responsiveness to Wnt/beta-catenin signaling. While GSK3beta down-regulation increases TCF7L2 expression, there is no concomitant change in TCF7L2 mRNA isoforms, which demonstrate the dual effects of lithium on TCF7L2 expression via a GSK3beta-dependent up-regulation and a GSK3beta-independent modulation of RNA splicing. TCF7L2E-long forms display a repressor activity on TCF7L2-promoter reporters and lithium induces a decrease of the endogenous TCF7L2 forms bound to native TCF7L2-promoter chromatin at two novel distal TCF7-binding sites. Altogether our data reveal a lithium-induced RNA switch favoring the expression of TCF7L2-short forms, which results in a transcriptional de-repression of lithium target genes negatively regulated by TCF7L2-long forms, like TCF7L2, and thus to an amplification of Wnt-signaling in responsive cells.


Assuntos
Processamento Alternativo , Lítio/metabolismo , Fatores de Transcrição TCF/genética , Proteínas Wnt/metabolismo , Animais , Bovinos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Cloreto de Lítio/farmacologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição , beta Catenina/metabolismo
17.
Cancers (Basel) ; 12(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455670

RESUMO

Cancer-associated fibroblasts (CAFs) are a prominent stromal cell type in solid tumors and molecules secreted by CAFs play an important role in tumor progression and metastasis. CAFs coexist as heterogeneous populations with potentially different biological functions. Although CAFs are a major component of the breast cancer stroma, molecular and phenotypic heterogeneity of CAFs in breast cancer is poorly understood. In this study, we investigated CAF heterogeneity in triple-negative breast cancer (TNBC) using a syngeneic mouse model, BALB/c-derived 4T1 mammary tumors. Using single-cell RNA sequencing (scRNA-seq), we identified six CAF subpopulations in 4T1 tumors including: 1) myofibroblastic CAFs, enriched for α-smooth muscle actin and several other contractile proteins; 2) 'inflammatory' CAFs with elevated expression of inflammatory cytokines; and 3) a CAF subpopulation expressing major histocompatibility complex (MHC) class II proteins that are generally expressed in antigen-presenting cells. Comparison of 4T1-derived CAFs to CAFs from pancreatic cancer revealed that these three CAF subpopulations exist in both tumor types. Interestingly, cells with inflammatory and MHC class II-expressing CAF profiles were also detected in normal breast/pancreas tissue, suggesting that these phenotypes are not tumor microenvironment-induced. This work enhances our understanding of CAF heterogeneity, and specifically targeting these CAF subpopulations could be an effective therapeutic approach for treating highly aggressive TNBCs.

18.
Clin Cancer Res ; 24(16): 3813-3819, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29739787

RESUMO

Purpose: Publicly available databases, for example, The Cancer Genome Atlas (TCGA), containing clinical and molecular data from many patients are useful in validating the contribution of particular genes to disease mechanisms and in forming novel hypotheses relating to clinical outcomes.Experimental Design: The impact of key drivers of cancer progression can be assessed by segregating a patient cohort by certain molecular features and constructing survival plots using the associated clinical data. However, conclusions drawn from this straightforward analysis are highly dependent on the quality and source of tissue samples, as demonstrated through the pancreatic ductal adenocarcinoma (PDAC) subset of TCGA.Results: Analyses of the PDAC-TCGA database, which contains mainly resectable cancer samples from patients in stage IIB, reveal a difference from widely known historic median and 5-year survival rates of PDAC. A similar discrepancy was observed in lung, stomach, and liver cancer subsets of TCGA. The whole transcriptome expression patterns of PDAC-TCGA revealed a cluster of samples derived from neuroendocrine tumors, which have a distinctive biology and better disease prognosis than PDAC. Furthermore, PDAC-TCGA contains numerous pseudo-normal samples, as well as those that arose from tumors not classified as PDAC.Conclusions: Inclusion of misclassified samples in the bioinformatic analyses distorts the association of molecular biomarkers with clinical outcomes, altering multiple published conclusions used to support and motivate experimental research. Hence, the stringent scrutiny of type and origin of samples included in the bioinformatic analyses by researchers, databases, and web-tool developers is of crucial importance for generating accurate conclusions. Clin Cancer Res; 24(16); 3813-9. ©2018 AACR.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Transcriptoma/genética , Adenocarcinoma/classificação , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/patologia , Biologia Computacional , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Prognóstico , Programa de SEER , Pesquisa Translacional Biomédica
19.
Mol Cell Biol ; 24(17): 7598-611, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15314168

RESUMO

Constitutive beta-catenin/Tcf activity, the primary transforming events in colorectal carcinoma, occurs through induction of the Wnt pathway or APC gene mutations that cause familial adenomatous polyposis. Mice carrying Apc mutations in their germ line (ApcMin) develop intestinal adenomas. Here, the crossing of ApcMin with cyclin D1-/- mice reduced the intestinal tumor number in animals genetically heterozygous or nullizygous for cyclin D1. Decreased tumor number in the duodenum, intestines, and colons of ApcMin/cyclin D1+/- mice correlated with reduced cellular proliferation and increased differentiation. Cyclin D1 deficiency reduced DNA synthesis and induced differentiation of colonic epithelial cells harboring mutant APC but not wild-type APC cells in vivo. In previous studies, the complete loss of cyclin D1 through homozygous genetic deletion conveyed breast tumor resistance. The protection of mice, genetically predisposed to intestinal tumorigenesis, through cyclin D1 heterozygosity suggests that modalities that reduce cyclin D1 abundance could provide chemoprotection.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Diferenciação Celular/fisiologia , Colo/anatomia & histologia , Ciclina D1/genética , Ciclina D1/metabolismo , Células Epiteliais/fisiologia , Neoplasias Gastrointestinais/patologia , Mucosa Intestinal/citologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Colo/metabolismo , Colo/patologia , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Feminino , Neoplasias Gastrointestinais/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Pólipos Intestinais/metabolismo , Pólipos Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina
20.
Mol Biol Cell ; 14(2): 585-99, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12589056

RESUMO

The Wnt/beta-catenin/Tcf and IkappaB/NF-kappaB cascades are independent pathways involved in cell cycle control, cellular differentiation, and inflammation. Constitutive Wnt/beta-catenin signaling occurs in certain cancers from mutation of components of the pathway and from activating growth factor receptors, including RON and MET. The resulting accumulation of cytoplasmic and nuclear beta-catenin interacts with the Tcf/LEF transcription factors to induce target genes. The IkappaB kinase complex (IKK) that phosphorylates IkappaB contains IKKalpha, IKKbeta, and IKKgamma. Here we show that the cyclin D1 gene functions as a point of convergence between the Wnt/beta-catenin and IkappaB pathways in mitogenic signaling. Mitogenic induction of G(1)-S phase progression and cyclin D1 expression was PI3K dependent, and cyclin D1(-/-) cells showed reduced PI3K-dependent S-phase entry. PI3K-dependent induction of cyclin D1 was blocked by inhibitors of PI3K/Akt/IkappaB/IKKalpha or beta-catenin signaling. A single Tcf site in the cyclin D1 promoter was required for induction by PI3K or IKKalpha. In IKKalpha(-/-) cells, mitogen-induced DNA synthesis, and expression of Tcf-responsive genes was reduced. Reintroduction of IKKalpha restored normal mitogen induction of cyclin D1 through a Tcf site. In IKKalpha(-/-) cells, beta-catenin phosphorylation was decreased and purified IKKalpha was sufficient for phosphorylation of beta-catenin through its N-terminus in vitro. Because IKKalpha but not IKKbeta induced cyclin D1 expression through Tcf activity, these studies indicate that the relative levels of IKKalpha and IKKbeta may alter their substrate and signaling specificities to regulate mitogen-induced DNA synthesis through distinct mechanisms.


Assuntos
Ciclina D1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Sítios de Ligação , Western Blotting , Diferenciação Celular , Núcleo Celular/metabolismo , Separação Celular , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citometria de Fluxo , Fase G1 , Genes Reporter , Vetores Genéticos , Glutationa Transferase/metabolismo , Humanos , Quinase I-kappa B , Fator 1 de Ligação ao Facilitador Linfoide , Microscopia de Fluorescência , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Especificidade por Substrato , Fatores de Tempo , Transativadores/metabolismo , Transcrição Gênica , Transfecção , beta Catenina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa