Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 764, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932678

RESUMO

BACKGROUND: Crimean Congo hemorrhagic fever (CCHF) is endemic in Southern Mauritania where recurrent outbreaks have been constantly observed since the 1980's. The present study is the first to assess CCHFV antibodies and RNA in humans. METHODS: A retrospective study was conducted using 263 humans and 1380 domestic animals serum samples, and 282 tick specimens of Hyalomma genus collected from 54 settings in 12 provinces across Mauritania. Antibodies targeting CCHF viral nucleoprotein were detected in animal and human sera using double-antigen ELISA. CCHFV specific RNA was detected in human and animal sera as well as tick supernatants using a CCHFV real time RT-PCR kit. Individual characteristics of sampled hosts were collected at the same time and data were geo-referenced. Satellite data of several environmental and climatic factors, were downloaded from publicly available datasets, and combined with data on livestock mobility, animal and human density, road accessibility and individual characteristics to identify possible risk factors for CCHFV spatial distribution. To this end, multivariate logistic models were developed for each host category (human, small and large ruminants). RESULTS: The overall CCHFV antibody prevalence was 11.8% [95% CI: 8.4-16.3] in humans (17.9% in 2020 and 5.4% in 2021; p = 0.0017) and 33.1% (95% CI: 30.1-36.3) in livestock. CCHFV-specific antibodies were detected in 91 (18.1%) out of 502 sheep, 43 (9.0%) out of 477 goats, 144 (90.5%) out of 161 dromedaries and 179 (74.6%) out of 240 cattle. CCHFV RNA was detected in only 2 (0.7%) sera out of 263 animals herders samples from Hodh El Gharbi province and in 32 (11.3%) out of 282 Hyalomma ticks. In humans as well as in animals, seropositivity was not associated with sex or age groups. The multivariate analysis determined the role of different environmental, climatic and anthropic factors in the spatial distribution of the disease with animal mobility and age being identified as risk factors. CONCLUSION: Results of the present study demonstrate the potential risk of CCHF for human population in Mauritania primarily those living in rural areas in close vicinity with animals. Future studies should prioritize an integrative human and veterinary approach for better understanding and managing Crimean-Congo hemorrhagic fever.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Saúde Única , Carrapatos , Humanos , Animais , Bovinos , Ovinos , Febre Hemorrágica da Crimeia/epidemiologia , Gado , Estudos Retrospectivos , Mauritânia , Cabras , Anticorpos Antivirais , RNA , Fatores de Risco , Estudos Soroepidemiológicos
2.
Virologie (Montrouge) ; 25(5): 263-279, 2021 10 01.
Artigo em Francês | MEDLINE | ID: mdl-34762049

RESUMO

Rift Valley fever (RVF) is a major emerging arboviral disease with a complex epidemiological cycle. RVF virus (RVFV) is transmitted by mosquito vectors to ruminants, causing epizootics, and then from animals to humans, triggering epidemics. During its cycle, RVFV infects a wide range of hosts, but the associated pathogenesis has yet to be elucidated. RVFV displays a predominant hepatic tropism, but also has a multicellular tropism inducing physiopathological effects in several tissues. However, there is variability between species in terms of physiopathology : a common clinical picture is found (severe hepatitis, hemorrhages, leukopenia), but certain forms are mainly found in humans (neurological and ocular damage) or in ruminant herds (waves of abortions). Although the molecular mechanisms involved are still poorly understood, it seems that early inflammatory response is related to the severity of the pathology. A better understanding of the pathogenesis of RVFV seems essential, especially since no specific treatment exists to date.


Assuntos
Epidemias , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Mosquitos Vetores , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/fisiologia , Ruminantes
3.
J Med Entomol ; 53(1): 212-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26487248

RESUMO

Biting midges of the genus Culicoides transmit pathogens of veterinary importance such as bluetongue virus (Reoviridae: Orbivirus). The saliva of Culicoides is known to contain bioactive molecules including peptides and proteins with vasodilatory and immunomodulative properties. In this study, we detected activity of enzyme hyaluronidase in six Culicoides species that commonly occur in Europe and that are putative vectors of arboviruses. Hyaluronidase was present in all species studied, although its molecular size, sensitivity to SDS, and substrate specificity differed between species. Further studies on the potential effect of hyaluronidase activity on the vector competence of Culicoides species for arboviruses would be beneficial.


Assuntos
Ceratopogonidae/enzimologia , Hialuronoglucosaminidase/metabolismo , Insetos Vetores/enzimologia , Animais , Infecções por Arbovirus/transmissão , Saliva/enzimologia
4.
PLoS Negl Trop Dis ; 18(3): e0011756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427694

RESUMO

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by the Rift Valley fever virus (RVFV) that can infect domestic and wild animals. Although the RVFV transmission cycle has been well documented across Africa in savanna ecosystems, little is known about its transmission in tropical rainforest settings, particularly in Central Africa. We therefore conducted a survey in northeastern Gabon to assess RVFV circulation among wild and domestic animals. Among 163 wildlife samples tested using RVFV-specific RT-qPCR, four ruminants belonging to subfamily Cephalophinae were detected positive. The phylogenetic analysis revealed that the four RVFV sequences clustered together with a virus isolated in Namibia within the well-structured Egyptian clade. A cross-sectional survey conducted on sheep, goats and dogs living in villages within the same area determined the IgG RVFV-specific antibody prevalence using cELISA. Out of the 306 small ruminants tested (214 goats, 92 sheep), an overall antibody prevalence of 15.4% (95% CI [11.5-19.9]) was observed with a higher rate in goats than in sheep (20.1% versus 3.3%). RVFV-specific antibodies were detected in a single dog out of the 26 tested. Neither age, sex of domestic animals nor season was found to be significant risk factors of RVFV occurrence. Our findings highlight sylvatic circulation of RVFV for the first time in Gabon. These results stress the need to develop adequate surveillance plan measures to better control the public health threat of RVFV.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Ovinos , Cães , Animais Domésticos , Animais Selvagens , Gabão/epidemiologia , Estudos Transversais , Ecossistema , Filogenia , Ruminantes , Cabras , Anticorpos Antivirais , Florestas , Estudos Soroepidemiológicos
5.
Emerg Microbes Infect ; 12(1): 2207672, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37306630

RESUMO

Rift Valley fever (RVF) is an arboviral disease of zoonotic origin that causes recurrent epidemics in Africa, the Arabic Peninsula, and islands of the South West of the Indian Ocean. RVF occurs mainly in livestock but also affects humans with severe clinical manifestations, including neurological disorders. However, human neuropathogenesis of Rift Valley fever virus (RVFV) is still poorly characterized. To study the interactions between RVFV and the central nervous system (CNS), we focused on RVFV infection of astrocytes, the major glial cells of the CNS that have several supporting roles including immune response regulation. We confirmed the permissiveness of astrocytes to RVFV infection and highlighted a strain-dependent infectivity. We showed that RVFV infection of astrocytes induced cell apoptosis and observed that the RVFV Non-Structural protein NSs, a known virulence factor, potentially delayed apoptosis by sequestrating activated-caspase 3 in the nucleus. Our study also showed that RVFV-infected astrocytes upregulated expression of genes associated with inflammatory and type I interferon responses at the mRNA level, but not at the protein level. This inhibition of immune response is potentially due to a NSs-dependent mechanism of mRNA nuclear export inhibition. Together, these results highlighted the direct impact of RVFV infection on the human CNS through the induction of apoptosis and a possible inhibition of early-onset immune responses that are crucial for the host survival.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Astrócitos/patologia , Febre do Vale de Rift/epidemiologia , Imunidade , RNA Mensageiro
6.
Acta Trop ; 239: 106835, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649804

RESUMO

Rift Valley fever (RVF) recently re-emerged in Mayotte. We described, for the first time, that the mosquito species Eretmapodites subsimplicipes, a highly abundant species in Mayotte, is a competent vector for the transmission of RVF virus using three distinct populations native to Mayotte. We also showed that Aedes albopictus specimens are able to transmit RVF virus (RVFV) as previously observed in mosquito populations of other countries emphasizing the need of the increase vigilance for this highly invasive species of global distribution. Altogether, these results underline the epidemiological importance of both species for RVFV transmission in Mayotte and contribute to better understand the RVF epidemiological cycle and help to implement efficient prevention measures.


Assuntos
Aedes , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Comores , Mosquitos Vetores
7.
One Health ; 17: 100583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37664171

RESUMO

Rift Valley fever virus (RVFV) is an arbovirus that causes Rift Valley fever (RVF), a zoonotic disease that mainly affects domestic and wildlife ruminants and humans. The first epidemic in North-Western and West Africa occurred in Senegal and Mauritania in 1987, two countries where RVF is now endemic. Slaughterhouse workers, farmers, herders and veterinarians are at high risk of exposure to RVF. Beyond the health threat, RVF is considered to cause major socio-economic problems, specifically in developing countries where livestock farming and trade are important economic activities. Indeed, the mortality rate linked to RVF infection can reach 95-100% in newborns and young animals. In West Africa, livestock production is a key factor for food production and for national economics. Epizootics caused by RVF can therefore have serious socio-economic consequences by impacting multisectoral economics, the psycho-social health of pastoral communities, and food security. Improving prevention strategies against RVF, including vaccination, enhancing knowledge of RVF and correcting any inappropriate behaviors by populations of endemics areas, as well as better monitoring of RVF ecological factors are effective ways to better foresee and control outbreaks of RVF and its socio-economical side-effects in countries at high risk of occurrence of the disease.

8.
Emerg Infect Dis ; 18(6): 972-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22607651

RESUMO

Rift Valley fever threatens human and animal health. After a human case was confirmed in Comoros in 2007, 4 serosurveys among ruminants in Mayotte suggested that Rift Valley fever virus had been circulating at low levels since 2004, although no clinical cases occurred in animals. Entomologic and ecologic studies will help determine outbreak potential.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças das Cabras/epidemiologia , Febre do Vale de Rift/veterinária , Vírus da Febre do Vale do Rift/imunologia , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Comores/epidemiologia , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras , Estudos Longitudinais , Prevalência , Estudos Retrospectivos , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Estudos Soroepidemiológicos
9.
Emerg Infect Dis ; 18(6): 969-71, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22608405

RESUMO

As further confirmation of a first human case of Rift Valley fever in 2007 in Comoros, we isolated Rift Valley fever virus in suspected human cases. These viruses are genetically closely linked to the 2006-2007 isolates from Kenya.


Assuntos
Genoma Viral , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Teorema de Bayes , Comores , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Vírus da Febre do Vale do Rift/isolamento & purificação , Análise de Sequência de DNA
10.
J Gen Virol ; 93(Pt 7): 1456-1464, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22513390

RESUMO

Currently, there are no worldwide licensed vaccines for Rift Valley fever (RVF) that are both safe and effective. Development and evaluation of vaccines, diagnostics and treatments depend on the availability of appropriate animal models. Animal models are also necessary to understand the basic pathobiology of infection. Here, we report the use of an inbred MBT/Pas mouse model that consistently reproduces RVF disease and serves our purpose for testing the efficacy of vaccine candidates; an attenuated Rift Valley fever virus (RVFV) and a recombinant RVFV-capripoxvirus. We show that this model is relevant for vaccine testing.


Assuntos
Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinação/métodos , Vacinas Virais/imunologia , Animais , Feminino , Humanos , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem
11.
PLoS Negl Trop Dis ; 16(2): e0010024, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108284

RESUMO

Rift Valley fever (RVF) is a mosquito-borne disease mostly affecting wild and domestic ruminants. It is widespread in Africa, with spillovers in the Arab Peninsula and the southwestern Indian Ocean. Although RVF has been circulating in West Africa for more than 30 years, its epidemiology is still not clearly understood. In 2013, an RVF outbreak hit Senegal in new areas that weren't ever affected before. To assess the extent of the spread of RVF virus, a national serological survey was implemented in young small ruminants (6-18 months old), between November 2014 and January 2015 (after the rainy season) in 139 villages. Additionally, the drivers of this spread were identified. For this purpose, we used a beta-binomial ([Formula: see text]) logistic regression model. An Integrated Nested Laplace Approximation (INLA) approach was used to fit the spatial model. Lower cumulative rainfall, and higher accessibility were both associated with a higher RVFV seroprevalence. The spatial patterns of fitted RVFV seroprevalence pointed densely populated areas of western Senegal as being at higher risk of RVFV infection in small ruminants than rural or southeastern areas. Thus, because slaughtering infected animals and processing their fresh meat is an important RVFV transmission route for humans, more human populations might have been exposed to RVFV during the 2013-2014 outbreak than in previous outbreaks in Senegal.


Assuntos
Doenças dos Animais/epidemiologia , Surtos de Doenças/veterinária , Febre do Vale de Rift/epidemiologia , Doenças dos Animais/virologia , Criação de Animais Domésticos , Animais , Humanos , Modelos Logísticos , Chuva , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Ruminantes/virologia , Senegal/epidemiologia , Estudos Soroepidemiológicos , Zoonoses Virais/epidemiologia
12.
One Health ; 15: 100413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277109

RESUMO

A new outbreak of Rift Valley fever (RVF) occurred in Mauritania from September to November 2020, involving 78 reported human cases and 186 reported animal cases. Eleven out of the 13 regions of the country were affected by the epidemic, with the highest number of both human and animal cases in Tagant, Assaba and Brakna regions. The most affected animal species in this outbreak was camels, followed by small ruminants. Among the 10 mosquito species caught, 7 species, Culex poicilipes, Cx. quinquefasciatus, Cx. antennatus, Cx. univitattus, Aedes vexans, Mansonia africana and Ma. uniformis, are known to be involved in the transmission of RVF virus. Phylogenetic analyses based on the partial NSs gene revealed close proximity between the human/animal Mauritania 2020 viral strains and the Mauritania 2015/Niger 2016 strains, suggesting re-emergence of the RVF virus in the country since the last reported outbreak in 2015.

14.
Parasit Vectors ; 14(1): 288, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044880

RESUMO

BACKGROUND: Reunion Island regularly faces outbreaks of bluetongue and epizootic hemorrhagic diseases, two insect-borne orbiviral diseases of ruminants. Hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) are the vectors of bluetongue (BTV) and epizootic hemorrhagic disease (EHDV) viruses. In a previous study, statistical models based on environmental and meteorological data were developed for the five Culicoides species present in the island to provide a better understanding of their ecology and predict their presence and abundance. The purpose of this study was to couple these statistical models with a Geographic Information System (GIS) to produce dynamic maps of the distribution of Culicoides throughout the island. METHODS: Based on meteorological data from ground weather stations and satellite-derived environmental data, the abundance of each of the five Culicoides species was estimated for the 2214 husbandry locations on the island for the period ranging from February 2016 to June 2018. A large-scale Culicoides sampling campaign including 100 farms was carried out in March 2018 to validate the model. RESULTS: According to the model predictions, no husbandry location was free of Culicoides throughout the study period. The five Culicoides species were present on average in 57.0% of the husbandry locations for C. bolitinos Meiswinkel, 40.7% for C. enderleini Cornet & Brunhes, 26.5% for C. grahamii Austen, 87.1% for C. imicola Kieffer and 91.8% for C. kibatiensis Goetghebuer. The models also showed high seasonal variations in their distribution. During the validation process, predictions were acceptable for C. bolitinos, C. enderleini and C. kibatiensis, with normalized root mean square errors (NRMSE) of 15.4%, 13.6% and 16.5%, respectively. The NRMSE was 27.4% for C. grahamii. For C. imicola, the NRMSE was acceptable (11.9%) considering all husbandry locations except in two specific areas, the Cirque de Salazie-an inner mountainous part of the island-and the sea edge, where the model overestimated its abundance. CONCLUSIONS: Our model provides, for the first time to our knowledge, an operational tool to better understand and predict the distribution of Culicoides in Reunion Island. As it predicts a wide spatial distribution of the five Culicoides species throughout the year and taking into consideration their vector competence, our results suggest that BTV and EHDV can circulate continuously on the island. As further actions, our model could be coupled with an epidemiological model of BTV and EHDV transmission to improve risk assessment of Culicoides-borne diseases on the island.


Assuntos
Distribuição Animal , Ceratopogonidae/classificação , Insetos Vetores/classificação , Animais , Bluetongue/transmissão , Vírus Bluetongue , Bovinos , Cervos , Surtos de Doenças , Cabras , Vírus da Doença Hemorrágica Epizoótica , Cavalos , Oceano Índico , Insetos Vetores/virologia , Modelos Estatísticos , Reunião , Medição de Risco , Estações do Ano , Ovinos , Especificidade da Espécie
15.
PLoS Negl Trop Dis ; 15(3): e0009202, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684126

RESUMO

Rift Valley fever (RVF) is a vector-borne viral disease of major animal and public health importance. In 2018-19, it caused an epidemic in both livestock and human populations of the island of Mayotte. Using Bayesian modelling approaches, we assessed the spatio-temporal pattern of RVF virus (RVFV) infection in livestock and human populations across the island, and factors shaping it. First, we assessed if (i) livestock movements, (ii) spatial proximity from communes with infected animals, and (iii) livestock density were associated with the temporal sequence of RVFV introduction into Mayotte communes' livestock populations. Second, we assessed whether the rate of human infection was associated with (a) spatial proximity from and (b) livestock density of communes with infected animals. Our analyses showed that the temporal sequence of RVFV introduction into communes' livestock populations was associated with livestock movements and spatial proximity from communes with infected animals, with livestock movements being associated with the best model fit. Moreover, the pattern of human cases was associated with their spatial proximity from communes with infected animals, with the risk of human infection sharply increasing if livestock in the same or close communes were infected. This study highlights the importance of understanding livestock movement networks in informing the design of risk-based RVF surveillance programs.


Assuntos
Gado , Febre do Vale de Rift/epidemiologia , Animais , Comores/epidemiologia , Epidemias/veterinária , Humanos , Modelos Biológicos , Fatores de Risco , Zoonoses
16.
Nat Commun ; 12(1): 5593, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552082

RESUMO

The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004-2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.


Assuntos
Modelos Teóricos , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Animais , Comores/epidemiologia , Gado/virologia , Febre do Vale de Rift/epidemiologia , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/transmissão
17.
Heliyon ; 7(9): e07932, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522818

RESUMO

Rift Valley fever (RVF) has been reported in the sub-Saharan region of Africa, Egypt and Arabian Peninsula - Yemen and Saudi Arabia, over the past 20 years and is a threat to both the animal and human populations in Tunisia. Tunisia is considered as a high-risk country for the introduction of RVF due to the informal movements of diseased animals already reported in the neighboring countries. The objective of this study was to assess the status of RVF in small ruminants and camels in Tunisia. A risk-based serological survey was conducted to evaluate the presence of RVF based on spatial qualitative risk analysis (SQRA). Samples were collected from small ruminants (sheep and goats) (n = 1,114), and camels (n = 173) samples, belonging to 18 breeders in 14 governorates between November 2017 and January 2018. Samples were tested using an RVF specific multispecies competitive ELISA. Out of the 1,287 samples tested for the presence of RVF IgG antibodies by ELISA, only one positive sample 0.07% (1/1 287) was detected but not confirmed with the virus neutralization test (VNT) used for confirmation. So far, no RVF outbreaks have been reported in Tunisia and our study confirmed the absence of RVF in livestock up to January 2018. Further investigations are needed to confirm the RVF-free status of Tunisia today.

18.
PLoS One ; 16(5): e0251263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010292

RESUMO

Rift Valley fever virus (RVFV), an arbovirus belonging to the Phlebovirus genus of the Phenuiviridae family, causes the zoonotic and mosquito-borne RVF. The virus, which primarily affects livestock (ruminants and camels) and humans, is at the origin of recent major outbreaks across the African continent (Mauritania, Libya, Sudan), and in the South-Western Indian Ocean (SWIO) islands (Mayotte). In order to be better prepared for upcoming outbreaks, to predict its introduction in RVFV unscathed countries, and to run efficient surveillance programmes, the priority is harmonising and improving the diagnostic capacity of endemic countries and/or countries considered to be at risk of RVF. A serological inter-laboratory proficiency test (PT) was implemented to assess the capacity of veterinary laboratories to detect antibodies against RVFV. A total of 18 laboratories in 13 countries in the Middle East, North Africa, South Africa, and the Indian Ocean participated in the initiative. Two commercial kits and two in-house serological assays for the detection of RVFV specific IgG antibodies were tested. Sixteen of the 18 participating laboratories (88.9%) used commercial kits, the analytical performance of test sensitivity and specificity based on the seroneutralisation test considered as the reference was 100%. The results obtained by the laboratories which used the in-house assay were correct in only one of the two criteria (either sensitivity or specificity). In conclusion, most of the laboratories performed well in detecting RVFV specific IgG antibodies and can therefore be considered to be prepared. Three laboratories in three countries need to improve their detection capacities. Our study demonstrates the importance of conducting regular proficiency tests to evaluate the level of preparedness of countries and of building a network of competent laboratories in terms of laboratory diagnosis to better face future emerging diseases in emergency conditions.


Assuntos
Febre do Vale de Rift/diagnóstico , África/epidemiologia , Animais , Anticorpos Antivirais/sangue , Doenças Endêmicas/veterinária , Ensaio de Imunoadsorção Enzimática/normas , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Ensaio de Imunoadsorção Enzimática/veterinária , Humanos , Imunoglobulina G/sangue , Oceano Índico/epidemiologia , Laboratórios/normas , Oriente Médio/epidemiologia , Garantia da Qualidade dos Cuidados de Saúde , Reprodutibilidade dos Testes , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Fatores de Risco , Testes Sorológicos/normas , Testes Sorológicos/estatística & dados numéricos , Testes Sorológicos/veterinária
19.
Parasitol Res ; 107(3): 731-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20512587

RESUMO

Species recognition and identification are crucial in any biological studies, especially when dealing with insect species involved in pathogen transmission. In recent years, molecular approaches have helped the clarification of systematic schemes and taxonomic status. Kiehl et al. (Parasitol Res 105:331-336, 2009) used molecular data to discuss the taxonomic status of biting midge species in the Palaearctic region. In the present work, the statements that "[Thus] there is no molecular support for the existence of a separate species C. montanus" and "[Therefore] probably C. scoticus should be considered only as a race of C. obsoletus" are discussed.


Assuntos
Bluetongue/epidemiologia , Bluetongue/transmissão , Ceratopogonidae/classificação , Ceratopogonidae/genética , DNA Espaçador Ribossômico/genética , Insetos Vetores , Animais , Vírus Bluetongue , Europa (Continente)/epidemiologia , Análise de Sequência de DNA , Especificidade da Espécie
20.
Parasit Vectors ; 13(1): 395, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758286

RESUMO

BACKGROUND: Arthropod borne virus infections are the cause of severe emerging diseases. Among the diseases due to arboviruses, dengue (DEN) and Rift Valley fever (RVF) are in the top ten in the list of diseases responsible of severe human cases worldwide. Understanding the effects of viral infection on gene expression in competent vectors is a challenge for the development of early diagnostic tools and may enable researchers and policy makers to better anticipate outbreaks in the next future. METHODS: In this study, alterations in gene expression across the entire Aedes aegypti genome during infection with DENV and RVFV were investigated in vitro at two time points of infection, the early phase (24 h) and the late phase (6 days) of infection using the RNA sequencing approach RESULTS: A total of 10 upregulated genes that share a similar expression profile during infection with both viruses at early and late phases of infection were identified. Family B and D clip-domain serine proteases (CLIP) were clearly overrepresented as well as C-type lectins and transferrin. CONCLUSIONS: Our data highlight the presence of 10 viral genes upregulated in Ae. aegypti during infection. They may also be targeted in the case of the development of broad-spectrum anti-viral diagnostic tools focusing the mosquito vectors rather than the mammalian hosts as they may predict the emergence of outbreaks.


Assuntos
Aedes , Vírus da Dengue , Vírus da Febre do Vale do Rift , Transcriptoma , Aedes/genética , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus , Dengue/transmissão , Perfilação da Expressão Gênica , Genes de Insetos , Interações entre Hospedeiro e Microrganismos , Humanos , Lectinas Tipo C/genética , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Serina Proteases/genética , Transferrina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa