Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Biol ; 22(1): 141, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926709

RESUMO

BACKGROUND: The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS: We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS: Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.


Assuntos
Evolução Molecular , Processos de Determinação Sexual , Animais , Processos de Determinação Sexual/genética , Masculino , Feminino , Percas/genética , Filogenia , Receptores de Peptídeos/genética , Genoma , Receptores de Fatores de Crescimento Transformadores beta
2.
Mol Biol Evol ; 38(2): 589-605, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32986833

RESUMO

Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxes functional constraints. Subterranean vertebrates are outstanding models to analyze this process, and gene decay can serve as a readout. We sought to understand some general principles on the extent and tempo of the decay of genes involved in vision, circadian clock, and pigmentation in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provided evidence for the largest loss of eye-specific genes and nonvisual opsin genes reported so far in cavefishes. Comparisons with a recently evolved cave population of Astyanax mexicanus and three species belonging to the Chinese tetraploid genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time, and genome ploidy on eye-specific gene pseudogenization. The limited extent of gene decay in all these cavefishes and the very small number of loss-of-function mutations per pseudogene suggest that their eye degeneration may not be very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several vision genes carrying many loss-of-function mutations in ancient fossorial mammals, further suggesting that blind fishes cannot thrive more than a few million years in cave ecosystems.


Assuntos
Relógios Circadianos/genética , Peixes/genética , Mutação com Perda de Função , Toupeiras/genética , Pigmentação/genética , Visão Ocular/genética , Animais , Cavernas , Pseudogenes , Seleção Genética , Peixe-Zebra
3.
Mol Biol Evol ; 37(11): 3324-3337, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556216

RESUMO

Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.


Assuntos
Técnicas Genéticas , Filogenia , Poliploidia , Algoritmos , Animais , Evolução Biológica , Duplicação Cromossômica , Peixes/genética , Família Multigênica
4.
Mar Drugs ; 19(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34436291

RESUMO

The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.


Assuntos
Ostreidae , Reprodução/fisiologia , Animais , Organismos Aquáticos , Perfilação da Expressão Gênica , Humanos , Oceano Pacífico , Fitoterapia
5.
BMC Genomics ; 21(1): 552, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781981

RESUMO

BACKGROUND: Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. Here we used sequencing approaches to better characterize sex determination and sex-chromosomes in an experimental strain of goldfish. RESULTS: Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18 °C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (~ 11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the coding DNA sequence of the goldfish amh gene. CONCLUSIONS: These results show that our goldfish strain has a relatively large sex locus on LG22, which is likely the Y chromosome of this experimental population. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers, which will be important tools for future research on sex determination in our experimental goldfish population. However, additional work would be needed to explore whether this sex locus is conserved in other populations of goldfish.


Assuntos
Carpa Dourada , Processos de Determinação Sexual , Animais , Feminino , Ligação Genética , Carpa Dourada/genética , Masculino , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo Y
6.
BMC Biol ; 17(1): 108, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31884969

RESUMO

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.


Assuntos
Animais Domésticos/genética , Cromatina/genética , Anotação de Sequência Molecular , Transcriptoma , Animais , Bovinos , Galinhas , Cabras , Filogenia , Sus scrofa
7.
BMC Genomics ; 19(1): 928, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545300

RESUMO

BACKGROUND: The sustainability of poultry farming relies on the development of more efficient and autonomous production systems in terms of feed supply. This implies a better integration of adaptive traits in breeding programs, including digestive efficiency, in order to favor the use of a wider variety of feedstuffs. The aim of the project was to improve the understanding of genes involved in digestive functions by characterizing the transcriptome of different sections of the digestive tract: the junction between the proventriculus and the gizzard, the gizzard, the gastroduodenal junction, and the jejunum. RESULTS: Total RNA from the four tissues were sequenced on a HiSeq2500 for six 23-day-old chickens from a second generation (F2) cross between two lines that were divergent for their digestive efficiency (D+/D-). Bioinformatics and biostatistics analyses of the RNA-seq data showed a total of 11,040 differentially expressed transcripts between the four tissues. In total, seven clusters of genes with markedly different expression profiles were identified. Functional analysis on gene groups was performed using "Gene Ontology" and semantic similarity. It showed a significant enrichment of body immune defenses in the jejunum, and an enrichment of transcriptional activity in the gizzard. Moreover, an interesting enrichment for neurohormonal control of muscle contraction was found for the two gizzard's junctions. CONCLUSION: This analysis allows us to draw the first molecular portrait of the different sections of the digestive tract, which will serve as a basis for future studies on the genetic and physiological control of the response of the animal to feed variations.


Assuntos
Galinhas/genética , Trato Gastrointestinal/metabolismo , Genômica , Animais , Perfilação da Expressão Gênica , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Transcriptoma
8.
J Exp Zool B Mol Dev Evol ; 328(7): 709-721, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28944589

RESUMO

Whole-genome duplications (WGDs) are important evolutionary events. Our understanding of underlying mechanisms, including the evolution of duplicated genes after WGD, however, remains incomplete. Teleost fish experienced a common WGD (teleost-specific genome duplication, or TGD) followed by a dramatic adaptive radiation leading to more than half of all vertebrate species. The analysis of gene expression patterns following TGD at the genome level has been limited by the lack of suitable genomic resources. The recent concomitant release of the genome sequence of spotted gar (a representative of holosteans, the closest-related lineage of teleosts that lacks the TGD) and the tissue-specific gene expression repertoires of over 20 holostean and teleostean fish species, including spotted gar, zebrafish, and medaka (the PhyloFish project), offers a unique opportunity to study the evolution of gene expression following TGD in teleosts. We show that most TGD duplicates gained their current status (loss of one duplicate gene or retention of both duplicates) relatively rapidly after TGD (i.e., prior to the divergence of medaka and zebrafish lineages). The loss of one duplicate is the most common fate after TGD with a probability of approximately 80%. In addition, the fate of duplicate genes after TGD, including subfunctionalization, neofunctionalization, or retention of two "similar" copies occurred not only before but also after the divergence of species tested, in consistency with a role of the TGD in speciation and/or evolution of gene function. Finally, we report novel cases of TGD ohnolog subfunctionalization and neofunctionalization that further illustrate the importance of these processes.


Assuntos
Evolução Molecular , Peixes/genética , Duplicação Gênica , Regulação da Expressão Gênica , Genoma , Animais , Especificidade da Espécie
9.
Nucleic Acids Res ; 43(W1): W589-98, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25897122

RESUMO

The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Genômica , Humanos , Internet , Neoplasias/genética , Proteômica
10.
BMC Genomics ; 17: 368, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189481

RESUMO

With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.


Assuntos
Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Peixes/genética , Duplicação Gênica , Expressão Gênica , Genoma , Animais , Biologia Computacional/métodos , Peixes/classificação , Perfilação da Expressão Gênica , Filogenia , Transcriptoma , Navegador
11.
Biol Reprod ; 91(6): 153, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25395674

RESUMO

FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Fatores de Transcrição Forkhead/genética , Genitália Feminina/metabolismo , Cabras/fisiologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , Animais Geneticamente Modificados , Transdiferenciação Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genitália Feminina/embriologia , Cabras/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ovário/metabolismo , Processos de Determinação Sexual/genética , Testículo/metabolismo , Regulação para Cima
12.
Sci Rep ; 14(1): 1694, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242932

RESUMO

Genomic imprinting represents an original model of epigenetic regulation resulting in a parent-of-origin expression. Despite the critical role of imprinted genes in mammalian growth, metabolism and neuronal function, there is no molecular tool specifically targeting them for a systematic evaluation. We show here that enzymatic methyl-seq consistently outperforms the bisulfite-based standard in capturing 165 candidate regions for genomic imprinting in the pig. This highlights the potential for a turnkey, fully customizable and reliable capture tool of genomic regions regulated by cytosine methylation in any population of interest. For the field of genomic imprinting, it opens up the possibility of detecting multilocus imprinting variations across the genome, with implications for basic research, agrigenomics and clinical practice.


Assuntos
Metilação de DNA , Impressão Genômica , Animais , Suínos , Epigênese Genética , Expressão Gênica , Genoma , Mamíferos/genética
13.
BMC Genomics ; 14: 904, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24350644

RESUMO

BACKGROUND: Successful early folliculogenesis is crucial for female reproductive function. It requires appropriate gene specific expression of the different types of ovarian cells at different developmental stages. To date, most gene expression studies on the ovary were conducted in rodents and did not distinguish the type of cell. In mono-ovulating species, few studies have addressed gene expression profiles and mainly concerned human oocytes. RESULTS: We used a laser capture microdissection method combined with RNA-seq technology to explore the transcriptome in oocytes and granulosa cells (GCs) during development of the sheep ovarian follicle. We first documented the expression profile of 15 349 genes, then focused on the 5 129 genes showing differential expression between oocytes and GCs. Enriched functional categories such as oocyte meiotic arrest and GC steroid synthesis reflect two distinct cell fates. We identified the implication of GC signal transduction pathways such as SHH, WNT and RHO GTPase. In addition, signaling pathways (VEGF, NOTCH, IGF1, etc.) and GC transzonal projections suggest the existence of complex cell-cell interactions. Finally, we highlighted several transcription regulators and specifically expressed genes that likely play an important role in early folliculogenesis. CONCLUSIONS: To our knowledge, this is the first comprehensive exploration of transcriptomes derived from in vivo oocytes and GCs at key stages in early follicular development in sheep. Collectively, our data advance our understanding of early folliculogenesis in mono-ovulating species and will be a valuable resource for unraveling human ovarian dysfunction such as premature ovarian failure (POF).


Assuntos
Regulação da Expressão Gênica , Folículo Ovariano/fisiologia , Transcriptoma , Animais , Comunicação Celular/genética , Análise por Conglomerados , Biologia Computacional , Feminino , Células da Granulosa/metabolismo , Humanos , Anotação de Sequência Molecular , Oócitos/metabolismo , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Nucleic Acids Res ; 39(Web Server issue): W479-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21531699

RESUMO

Evolutionary analyses of biological data are becoming a prerequisite in many fields of biology. At a time of high-throughput data analysis, phylogenetics is often a necessary complementary tool for biologists to understand, compare and identify the functions of sequences. But available bioinformatics tools are frequently not easy for non-specialists to use. We developed PhyleasProg (http://phyleasprog.inra.fr), a user-friendly web server as a turnkey tool dedicated to evolutionary analyses. PhyleasProg can help biologists with little experience in evolutionary methodologies by analysing their data in a simple and robust way, using methods corresponding to robust standards. Via a very intuitive web interface, users only need to enter a list of Ensembl protein IDs and a list of species as inputs. After dynamic computations, users have access to phylogenetic trees, positive/purifying selection data (on site and branch-site models), with a display of these results on the protein sequence and on a 3D structure model, and the synteny environment of related genes. This connection between different domains of phylogenetics opens the way to new biological analyses for the discovery of the function and structure of proteins.


Assuntos
Filogenia , Proteínas/química , Software , Internet , Proteínas/classificação , Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Sintenia
15.
Science ; 379(6632): 572-575, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758078

RESUMO

Accurate species phylogenies are a prerequisite for all evolutionary research. Teleosts are the largest and most diversified group of extant vertebrates, but relationships among their three oldest extant lineages remain unresolved. On the basis of seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the topology of the deepest branches of the teleost phylogeny using independent gene sequence and chromosomal rearrangement phylogenomic approaches. These analyses converged to a single scenario that unambiguously places the Elopomorpha and Osteoglossomorpha (arapaima, elephantnose fish) in a monophyletic sister group to all other teleosts, i.e., the Clupeocephala lineage (zebrafish, medaka). This finding resolves more than 50 years of controversy on the evolutionary relationships of these lineages and highlights the power of combining different levels of genome-wide information to solve complex phylogenies.


Assuntos
Evolução Biológica , Peixes , Animais , Enguias/classificação , Enguias/genética , Peixes/classificação , Peixes/genética , Genoma , Filogenia , Peixe-Zebra/classificação , Peixe-Zebra/genética
16.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014084

RESUMO

The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.

17.
Physiol Genomics ; 44(5): 283-92, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22214599

RESUMO

Chickens mimic an insulin-resistance state by exhibiting several peculiarities with regard to plasma glucose level and its control by insulin. To gain insight into the role of insulin in the control of chicken transcriptome, liver and leg muscle transcriptomes were compared in fed controls and "diabetic" chickens, at 5 h after insulin immuno-neutralization, using 20.7K-chicken oligo-microarrays. At a level of false discovery rate <0.01, 1,573 and 1,225 signals were significantly modified by insulin privation in liver and muscle, respectively. Microarray data agreed reasonably well with qRT-PCR and some protein level measurements. Differentially expressed mRNAs with human ID were classified using Biorag analysis and Ingenuity Pathway Analysis. Multiple metabolic pathways, structural proteins, transporters and proteins of intracellular trafficking, major signaling pathways, and elements of the transcriptional control machinery were largely represented in both tissues. At least 42 mRNAs have already been associated with diabetes, insulin resistance, obesity, energy expenditure, or identified as sensors of metabolism in mice or humans. The contribution of the pathways presently identified to chicken physiology (particularly those not yet related to insulin) needs to be evaluated in future studies. Other challenges include the characterization of "unknown" mRNAs and the identification of the steps or networks, which disturbed tissue transcriptome so extensively, quickly after the turning off of the insulin signal. In conclusion, pleiotropic effects of insulin in chickens are further evidenced; major pathways controlled by insulin in mammals have been conserved despite the presence of unique features of insulin signaling in chicken muscle.


Assuntos
Anticorpos Neutralizantes/farmacologia , Galinhas/imunologia , Insulina/imunologia , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ração Animal , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/fisiologia , Anticorpos Anti-Insulina/imunologia , Anticorpos Anti-Insulina/metabolismo , Anticorpos Anti-Insulina/farmacologia , Fígado/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Análise em Microsséries , Músculo Esquelético/metabolismo , Testes de Neutralização , Proteínas/efeitos dos fármacos , Proteínas/metabolismo
18.
BMC Genomics ; 13: 238, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694767

RESUMO

BACKGROUND: There is considerable interest in developing high-throughput genotyping with single nucleotide polymorphisms (SNPs) for the identification of genes affecting important ecological or economical traits. SNPs are evenly distributed throughout the genome and are likely to be functionally relevant. In rainbow trout, in silico screening of EST databases represents an attractive approach for de novo SNP identification. Nevertheless, EST sequencing errors and assembly of EST paralogous sequences can lead to the identification of false positive SNPs which renders the reliability of EST-derived SNPs relatively low. Further validation of EST-derived SNPs is therefore required. The objective of this work was to assess the quality of and to validate a large number of rainbow trout EST-derived SNPs. RESULTS: A panel of 1,152 EST-derived SNPs was selected from the INRA Sigenae SNP database and was genotyped in standard and double haploid individuals from several populations using the Illumina GoldenGate BeadXpress assay. High-quality genotyping data were obtained for 958 SNPs representing a genotyping success rate of 83.2 %, out of which, 350 SNPs (36.5 %) were polymorphic in at least one population and were designated as true SNPs. They also proved to be a potential tool to investigate genetic diversity of the species, as the set of SNP successfully sorted individuals into three main groups using STRUCTURE software. Functional annotations revealed 28 non-synonymous SNPs, out of which four substitutions were predicted to affect protein functions. A subset of 223 true SNPs were polymorphic in the two INRA mapping reference families and were integrated into the INRA microsatellite-based linkage map. CONCLUSIONS: Our results represent the first study of EST-derived SNPs validation in rainbow trout, a species whose genome sequences is not yet available. We designed several specific filters in order to improve the genotyping yield. Nevertheless, our selection criteria should be further improved in order to reduce the observed high rate of false positive SNPs which results from the occurrence of whole genome duplications.


Assuntos
Etiquetas de Sequências Expressas , Genoma , Oncorhynchus mykiss/genética , Polimorfismo de Nucleotídeo Único , Software , Animais , Mapeamento Cromossômico , Simulação por Computador , Variação Genética , Genótipo , Técnicas de Genotipagem , Repetições de Microssatélites , Modelos Genéticos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
19.
BMC Genomics ; 13: 457, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950364

RESUMO

BACKGROUND: Most egg yolk precursors are synthesized by the liver, secreted into the blood and transferred into oocytes, to provide nutrients and bioactive molecules for the avian embryo. Three hundred and sixteen distinct proteins have been identified in egg yolk. These include 37 proteases and antiproteases, which are likely to play a role in the formation of the yolk (vitellogenesis), as regulators of protein metabolism. We used a transcriptomic approach to define the protease and antiprotease genes specifically expressed in the hen liver in relation to vitellogenesis by comparing sexually mature and pre-laying chickens showing different steroid milieu. RESULTS: Using a 20 K chicken oligoarray, a total of 582 genes were shown to be over-expressed in the liver of sexually mature hens (1.2 to 67 fold-differences). Eight of the top ten over-expressed genes are known components of the egg yolk or perivitelline membrane. This list of 582 genes contains 12 proteases and 3 antiproteases. We found that "uncharacterized protein LOC419301/similar to porin" (GeneID:419301), an antiprotease and "cathepsin E-A-like/similar to nothepsin" (GeneID:417848), a protease, were the only over-expressed candidates (21-fold and 35-fold difference, respectively) that are present in the egg yolk. Additionally, we showed the 4-fold over-expression of "ovochymase-2/similar to oviductin" (GeneID:769290), a vitelline membrane-specific protease. CONCLUSIONS: Our approach revealed that three proteases and antiproteases are likely to participate in the formation of the yolk. The role of the other 12 proteases and antiproteases which are over-expressed in our model remains unclear. At least 1/3 of proteases and antiproteases identified in egg yolk and vitelline membrane proteomes are expressed similarly in the liver regardless of the maturity of hens, and have been initially identified as regulators of haemostasis and inflammatory events. The lack of effect of sex steroids on these genes expressed in the liver but the products of which are found in the yolk suggests that these may be passively incorporated into the yolk rather than actively produced for that purpose. These results raise the question of the biological significance of egg yolk proteases and antiproteases, and more generally of all minor proteins that have been identified in egg yolk.


Assuntos
Galinhas/genética , Fígado/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Vitelogênese , Animais , Galinhas/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Gema de Ovo/enzimologia , Feminino , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/genética , Transcriptoma , Membrana Vitelina/enzimologia
20.
BMC Genomics ; 13: 551, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23066875

RESUMO

BACKGROUND: As for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome. RESULTS: The sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene. CONCLUSIONS: These data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix.


Assuntos
Proteínas Aviárias/genética , Mapeamento Cromossômico , Coturnix/genética , Distrofina/genética , Estudos de Associação Genética , Genoma , Resposta de Imobilidade Tônica , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Galinhas/genética , Cromossomos , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa