Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nano Lett ; 24(26): 7992-7998, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885645

RESUMO

The development of advanced cathode materials able to promote the sluggish redox kinetics of polysulfides is crucial to bringing lithium-sulfur batteries to the market. Herein, two electrode materials: namely, Zr2PS2 and Zr2PTe2, are identified through screening several hundred thousand compositions in the Inorganic Crystal Structure Database. First-principles calculations are performed on these two materials. These structures are similar to that of the classical MXenes. Concurrently, calculations show that Zr2PS2 and Zr2PTe2 possess high electrical conductivity, promote Li ion diffusion, and have excellent electrocatalytic activity for the Li-S reaction and particularly for the Li2S decomposition. Besides, the mechanisms behind the excellent predicted performance of Zr2PS2 and Zr2PTe2 are elucidated through electron localization function, charge density difference, and localized orbital locator. This work not only identifies two candidate sulfur cathode additives but may also serve as a reference for the identification of additional electrode materials in new generations of batteries, particularly in sulfur cathodes.

2.
Nano Lett ; 24(26): 8126-8133, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904329

RESUMO

While lead sulfide shows notable thermoelectric properties, its production costs remain high, and its mechanical hardness is low, which constrains its commercial viability. Herein, we demonstrate a straightforward and cost-effective method to produce PbS nanocrystals at ambient temperature. By introducing controlled amounts of silver, we achieve p-type conductivity and fine-tune the energy band structure and lattice configuration. Computational results show that silver shifts the Fermi level into the valence band, facilitating band convergence and thereby enhancing the power factor. Besides, excess silver is present as silver sulfide, which effectively diminishes the interface barrier and enhances the Seebeck coefficient. Defects caused by doping, along with dislocations and interfaces, reduce thermal conductivity to 0.49 W m-1 K-1 at 690 K. Moreover, the alterations in crystal structure and chemical composition enhance the PbS mechanical properties. Overall, optimized materials show thermoelectric figures of merit approximately 10-fold higher than that of pristine PbS, alongside an average hardness of 1.08 GPa.

3.
Small ; 20(7): e2306178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800605

RESUMO

The ethanol oxidation reaction (EOR) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts for both EOR and hydrogen evolution reaction (HER) is a major challenge. Herein, the synthesis of Pd3 Pb@Pt core-shell nanocubes with controlled shell thickness by Pt-seeded epitaxial growth on intermetallic Pd3 Pb cores is reported. The lattice mismatch between the Pd3 Pb core and the Pt shell leads to the expansion of the Pt lattice. The synergistic effects between the tensile strain and the core-shell structures result in excellent electrocatalytic performance of Pd3 Pb@Pt catalysts for both EOR and HER. In particular, Pd3 Pb@Pt with three Pt atomic layers shows a mass activity of 8.60 A mg-1 Pd+Pt for ethanol upgrading to acetic acid and close to 100% of Faradic efficiency for HER. An EOR/HER electrolysis system is assembled using Pd3 Pb@Pt for both the anode and cathode, and it is shown that low cell voltage of 0.75 V is required to reach a current density of 10 mA cm-2 . The present work offers a promising strategy for the development of bifunctional catalysts for hybrid electrocatalytic reactions and beyond.

4.
Small ; 20(22): e2309176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150625

RESUMO

Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.

5.
J Am Chem Soc ; 145(34): 18992-19004, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603793

RESUMO

An AB2X4 spinel structure, with tetrahedral A and octahedral B sites, is a paradigmatic class of catalysts with several possible geometric configurations and numerous applications, including polysulfide conversion in metal-sulfur batteries. Nonetheless, the influence of the geometric configuration and composition on the mechanisms of catalysis and the precise manner in which spinel catalysts facilitate the conversion of polysulfides remain unknown. To enable controlled exposure of single active configurations, herein, Cotd2+ and Cooh3+ in Co3O4 catalysts for sodium polysulfide conversion are in large part replaced by Fetd2+ and Feoh3+, respectively, generating FeCo2O4 and CoFe2O4. Through an examination of electrochemical activation energies, the characterization of symmetric cells, and theoretical calculations, we determine that Cooh3+ serves as the active site for the breaking of S-S bonds, while Cotd2+ functions as the active site for the formation of S-Na bonds. The current study underlines the subtle relationship between activity and geometric configurations of spinel catalysts, providing unique insights for the rational development of improved catalysts by optimizing their atomic geometric configuration.

6.
Small ; 19(49): e2303639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37608461

RESUMO

Electrochromic smart windows (ESWs) offer an attractive option for regulating indoor lighting conditions. Electrochromic materials based on ion insertion/desertion mechanisms also present the possibility for energy storage, thereby increasing overall energy efficiency and adding value to the system. However, current electrochromic electrodes suffer from performance degradation, long response time, and low coloration efficiency. This work aims to produce defect-engineered brookite titanium dioxide (TiO2 ) nanorods (NRs) with different lengths and investigate their electrochromic performance as potential energy storage materials. The controllable synthesis of TiO2 NRs with inherent defects, along with smaller impedance and higher carrier concentrations, significantly enhances their electrochromic performance, including improved resistance to degradation, shorter response times, and enhanced coloration efficiency. The electrochromic performance of TiO2 NRs, particularly longer ones, is characterized by fast switching speeds (20 s for coloration and 12 s for bleaching), high coloration efficiency (84.96 cm2  C-1 at a 600 nm wavelength), and good stability, highlighting their potential for advanced electrochromic smart window applications based on Li+ ion intercalation.

7.
Small ; 19(37): e2302644, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144432

RESUMO

Silicon oxide (SiOx ), inheriting the high-capacity characteristic of silicon-based materials but possessing superior cycling stability, is a promising anode material for next-generation Li-ion batteries. SiOx is typically applied in combination with graphite (Gr), but the limited cycling durability of the SiOx /Gr composites curtails large-scale applications. In this work, this limited durability is demonstrated in part related to the presence of a bidirectional diffusion at the SiOx /Gr interface, which is driven by their intrinsic working potential differences and the concentration gradients. When Li on the Li-rich surface of SiOx is captured by Gr, the SiOx surface shrinks, hindering further lithiation. The use of soft carbon (SC) instead of Gr can prevent such instability is further demonstrated. The higher working potential of SC avoids bidirectional diffusion and surface compression thus allowing further lithiation. In this scenario, the evolution of the Li concentration gradient in SiOx conforms to its spontaneous lithiation process, benefiting the electrochemical performance. These results highlight the focus on the working potential of carbon as a strategy for rational optimization of SiOx /C composites toward improved battery performance.

8.
Langmuir ; 39(10): 3692-3698, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36861659

RESUMO

The production of materials that simultaneously combine large surface areas and high crystallinities is a major challenge. Conventional sol-gel chemistry strategies to produce high-surface-area gels and aerogels generally result in amorphous or poorly crystalline materials. To attain proper crystallinities, materials are exposed to relatively high annealing temperatures that result in significant surface losses. This is a particularly limiting issue in the production of high-surface-area magnetic aerogels owing to the strong relationship between crystallinity and magnetic moment. To overcome this limitation, we demonstrate here the gelation of preformed magnetic crystalline nanodomains to produce magnetic aerogels with high surface area, crystallinity, and magnetic moment. To exemplify this strategy, we use colloidal maghemite nanocrystals as gel building blocks and an epoxide group as the gelation agent. After drying from supercritical CO2, aerogels show surface areas close to 200 m2 g-1 and a well-defined maghemite crystal structure that provides saturation magnetizations close to 60 emu g-1. For comparison, the gelation of hydrated iron chloride with propylene oxide provides amorphous iron oxide gels with slightly larger surface areas, 225 m2 g-1, but very low magnetization, below 2 emu g-1. Thermal treatment at 400 °C is necessary to crystallize the material, which results in a surface area loss down to 87 m2 g-1, well below the values obtained from the nanocrystal building blocks.

9.
Inorg Chem ; 62(40): 16323-16328, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755155

RESUMO

In this study, we report the easy and low-cost synthesis of calcium niobate (CaNb2O6) with the isomorphic structure of the Rynersonite mineral for CaTa2O6. The samples were prepared by the ball milling method at room temperature at a synthesis time of 0.5, 1, 2, 3, and 4 h. The structural analysis by XRD, Rietveld refinement, and vibrational Raman spectroscopy confirms all diffraction peaks and active mode characteristics of the pure phase of CaNb2O6 for the 3-h and 4-h samples, with a crystallite size of 22.5 and 23.2 nm, respectively. The optical band gap obtained was 3.18(2) eV (3-h sample), lower than the optical band gap for niobium oxide, characteristic of materials with strong photon absorption in the UVA region of the spectrum. The surface analysis by scanning electron microscopy reveals the obtention of several agglomerates of irregular particles ranging in the submicro and micro scales. Therefore, the present approach successfully obtained calcium niobate with the formula CaNb2O6 at a short synthesis time and room temperature.

10.
Inorg Chem ; 61(16): 6337-6346, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35417139

RESUMO

Tuning the composition and morphology of bimetallic nanoparticles (NPs) offers an effective strategy to improve their electrocatalytic performance. In this work, we present a facile wet-chemistry procedure to engineer PdSb NPs with controlled morphology. Spherical or branched NPs are produced by tuning the heterogeneous nucleation of Sb on Pd seeds. Compared with pure Pd NPs, the incorporation of Sb not only decreases the amount of Pd used but also results in a significant increase of activity and stability for the electrocatalytic ethanol oxidation reaction (EOR). Best performances are obtained with highly branched PdSb NPs, which deliver a specific activity of 109 mA cm-2 and a mass activity of up to 2.42 A mgPd-1, well above that of a commercial Pd/C catalyst and branched Pd NPs. Moreover, PdSb displays significant stability enhancement of over 10 h for the EOR measurements. Density functional theory calculations reveal that the improved performance of PdSb NPs is related to the role played by Sb in reducing the energy barrier of the EOR rate-limiting step. Interestingly, as a side and value-added product of the EOR, acetate is obtained with 100% selectivity on PdSb catalysts.

11.
Inorg Chem ; 61(34): 13433-13441, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35983854

RESUMO

The electrocatalytic oxidation of alcohols is a potentially cost-effective strategy for the synthesis of valuable chemicals at the anode while simultaneously generating hydrogen at the cathode. For this approach to become commercially viable, high-activity, low-cost, and stable catalysts need to be developed. Herein, we demonstrate an electrocatalyst based on earth-abundant nickel and sulfur elements. Experimental investigations reveal the produced NiS displays excellent electrocatalytic performance associated with a higher electrochemical surface area (ECSA) and the presence of sulfate ions on the formed NiOOH surface in basic media. The current densities reached for the oxidation of ethanol and methanol at 1.6 V vs reversible hydrogen electrode (RHE) are up to 175.5 and 145.1 mA cm-2, respectively. At these high current densities, the Faradaic efficiency of methanol to formate conversion is 98% and that of ethanol to acetate is 81%. Density functional theory calculations demonstrate the presence of the generated sulfate groups to modify the electronic properties of the NiOOH surface, improving electroconductivity and electron transfer. Besides, calculations are used to determine the reaction energy barriers, revealing the dehydrogenation of ethoxy groups to be more favorable than that of methoxy on the catalyst surface, which explains the highest current densities obtained for ethanol oxidation.

12.
Angew Chem Int Ed Engl ; 61(49): e202211570, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36216781

RESUMO

Lithium-sulfur batteries (LSBs) are still limited by the shuttle of lithium polysulfides (LiPS) and the slow Li-S reaction. Herein, we demonstrate that when using cobalt sulfide as a catalytic additive, an external magnetic field generated by a permanent magnet can significantly improve the LiPS adsorption ability and the Li-S reaction kinetics. More specifically, the results show both experimentally and theoretically how an electron spin polarization of Co ions reduces electron repulsion and enhances the degree of orbital hybridization, thus resulting in LSBs with unprecedented performance and stability. Under an external magnetic field, LSBs with 0.0084 % per cycle decay rate at 2 C during 8150 cycles are produced. Overall, this work not only demonstrates an effective strategy to promote LiPS adsorption and electrochemical conversion in LSBs at no additional energy cost but also enriches the application of the spin effect in the electrocatalysis fields.

13.
Small ; 17(6): e2006623, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33458957

RESUMO

The electro-oxidation of methanol to formate is an interesting example of the potential use of renewable energies to add value to a biosourced chemical commodity. Additionally, methanol electro-oxidation can replace the sluggish oxygen evolution reaction when coupled to hydrogen evolution or to the electroreduction of other biomass-derived intermediates. But the cost-effective realization of these reaction schemes requires the development of efficient and low-cost electrocatalysts. Here, a noble metal-free catalyst, Ni1- x Fex Se2 nanorods, with a high potential for an efficient and selective methanol conversion to formate is demonstrated. At its optimum composition, Ni0.75 Fe0.25 Se2 , this diselenide is able to produce 0.47 mmol cm-2  h-1 of formate at 50 mA cm-2 with a Faradaic conversion efficiency of 99%. Additionally, this noble-metal-free catalyst is able to continuously work for over 50 000 s with a minimal loss of efficiency, delivering initial current densities above 50 mA cm-2 and 2.2 A mg-1 in a 1.0 m KOH electrolyte with 1.0 m methanol at 1.5 V versus reversible hydrogen electrode. This work demonstrates the highly efficient and selective methanol-to-formate conversion on Ni-based noble-metal-free catalysts, and more importantly it shows a very promising example to exploit the electrocatalytic conversion of biomass-derived chemicals.

14.
Small ; 17(25): e2100888, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34032381

RESUMO

Despite the rapid development of CsPbIx Br3- x (0 ≤ x ≤ 3) inorganic perovskite solar cells, associated with their superior thermal stability, their low moisture stability limits their commercial deployment. In this study, 1D-2D-3D multidimensional coupled perovskites are prepared by means of an in situ self-integration approach. This pioneering method allows incorporating thus far unreported 1D-Tpy2 Pb3 I6 and 2D-TpyPb3 I6 (Tpy; terpyridine) perovskites. Heterojunction perovskites demonstrate superior stability against water in comparison with control 3D CsPbI2 Br, which is related to the hydrophobicity of low-dimension (LD) perovskites. Remarkably, the spontaneous involvement of LD perovskites can adjust/reconstruct the interfacial structure. This modification allows releasing the residual strain, establishing effective charge transfer channels that increase the carrier transport ability. Accordingly, 1D-2D-3D hybrid CsPbI2 Br perovskite solar cells demonstrate a stabilized power conversion efficiency as high as 16.1%, which represents a very significant improvement, by a factor of 43%, with respect to control 3D CsPbI2 Br perovskite solar cell. Equally importantly, the multidimensional coupled perovskite solar cells exhibit extraordinary stability, well above 1000 h in ambient atmosphere.

15.
Sensors (Basel) ; 21(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669964

RESUMO

A low-cost signal processing circuit developed to measure and drive a heat dissipation soil matric potential sensor based on a single thermosensitive resistor is demonstrated. The SnSe2 has a high thermal coefficient, from -2.4Ω/°C in the 20 to 25 °C to -1.07Ω/°C in the 20 to 25 °C. The SnSe2 thermosensitive resistor is encapsulated with a porous gypsum block and is used as both the heating and temperature sensing element. To control the power dissipated on the thermosensitive resistor and keep it constant during the heat pulse, a mixed analogue/digital circuit is used. The developed control circuit is able to maintain the dissipated power at 327.98±0.3% mW when the resistor changes from 94.96Ω to 86.23Ω. When the gravimetric water content of the porous block changes from dry to saturated (θw=36.7%), we measured a variation of 4.77Ω in the thermosensitive resistor, which results in an end-point sensitivity of 130 mΩ/%. The developed system can easily meet the standard requirement of measuring the gravimetric soil water content with a resolution of approximately Δθw=1%, since the resistance is measured with a resolution of approximately µ31µΩ, three orders of magnitude smaller than the sensitivity.

16.
Angew Chem Int Ed Engl ; 59(47): 20826-20830, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32767494

RESUMO

A methanol economy will be favored by the availability of low-cost catalysts able to selectively oxidize methanol to formate. This selective oxidation would allow extraction of the largest part of the fuel energy while concurrently producing a chemical with even higher commercial value than the fuel itself. Herein, we present a highly active methanol electrooxidation catalyst based on abundant elements and with an optimized structure to simultaneously maximize interaction with the electrolyte and mobility of charge carriers. In situ infrared spectroscopy combined with nuclear magnetic resonance spectroscopy showed that branched nickel carbide particles are the first catalyst determined to have nearly 100 % electrochemical conversion of methanol to formate without generating detectable CO2 as a byproduct. Electrochemical kinetics analysis revealed the optimized reaction conditions and the electrode delivered excellent activities. This work provides a straightforward and cost-efficient way for the conversion of organic small molecules and the first direct evidence of a selective formate reaction pathway.

17.
J Am Chem Soc ; 141(20): 8025-8029, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31017419

RESUMO

The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe.

18.
Chem Rev ; 117(9): 5865-6109, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394585

RESUMO

This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.


Assuntos
Calcogênios/química , Cobre/química , Nanopartículas/química , Nanotecnologia/métodos , Animais , Técnicas de Química Sintética , Humanos , Nanopartículas/toxicidade
19.
Nano Lett ; 18(4): 2557-2563, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29546994

RESUMO

Bottom-up approaches for producing bulk nanomaterials have traditionally lacked control over the crystallographic alignment of nanograins. This limitation has prevented nanocrystal-based nanomaterials from achieving optimized performances in numerous applications. Here we demonstrate the production of nanostructured Bi xSb2- xTe3 alloys with controlled stoichiometry and crystallographic texture through proper selection of the starting building blocks and the adjustment of the nanocrystal-to-nanomaterial consolidation process. In particular, we hot pressed disk-shaped Bi xSb2- xTe3 nanocrystals and tellurium nanowires using multiple pressure and release steps at a temperature above the tellurium melting point. We explain the formation of the textured nanomaterials though a solution-reprecipitation mechanism under a uniaxial pressure. Additionally, we further demonstrate these alloys to reach unprecedented thermoelectric figures of merit, up to ZT = 1.96 at 420 K, with an average value of ZTave = 1.77 for the record material in the temperature range 320-500 K, thus potentially allowing up to 60% higher energy conversion efficiencies than commercial materials.

20.
Langmuir ; 34(31): 9167-9174, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30015491

RESUMO

The assembly of colloidal nanocrystals (NCs) is a unique strategy to produce porous materials with high crystallinity and unmatched control over structural and chemical parameters. This strategy has been demonstrated mostly for single-component nanomaterials. In the present work, we report the gelation of colloidal NC solutions driven by the electrostatic interaction of oppositely charged NCs. A key step for leading this strategy to success is to produce a stable colloidal solution of the positively charged component. We achieved this goal by functionalizing the NCs with inexpensive and nontoxic amino acids such as glutamine. We demonstrate the combination of positively and negatively charged NCs in proper concentrations to result in gels with a homogeneous distribution of the two compounds. In this way, porous nanocomposites with virtually any combination can be produced. We illustrate this approach by combining positively charged ceria NCs with negatively charged gold NCs to form Au-CeO2 gels. These gels were dried from supercritical CO2 to produce highly porous Au-CeO2 aerogels with specific surface areas of 120 m2 g-1. The formation of a proper interface is confirmed through the evaluation of nanocomposite catalytic activity toward CO oxidation. We further demonstrate the versatility of this strategy to produce porous metal chalcogenide-metal oxide and metal-metal chalcogenide nanocomposites by the examples of PbS-CeO2 and Au-PbS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa