Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(10): 5631-5636, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856576

RESUMO

Cyclobutadiene is a highly reactive antiaromatic hydrocarbon that has fascinated chemists for over 60 years. However, its preparation and uses in chemical synthesis are sparing, in part due to its lengthy synthesis that generates hazardous byproducts including excess heavy metals. Herein, we report a scalable, metal-free cyclobutadiene reagent, diethyldiazabicyclohexene dicarboxylate, and explore its intermolecular [4 + 2] cycloaddition with various electron-deficient alkenes. We also demonstrate its utility in a three-step synthesis of dipiperamide G and a diverse array of product derivatizations including bromocyclobutadiene.

2.
Chempluschem ; 87(5): e202200096, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604021

RESUMO

The synthesis of 3-(nitratoethyl-N-nitramino)-5-(nitratomethyl) isoxazole (C6 H7 N5 O9 , 1) is presented, and its energetic properties were ascertained and analyzed for energetic applications potential. 1 was found to be a solid without melting behavior, begins to decompose at 140 °C, and has a thermal onset decomposition temperature of 171.5 °C. 1 was synthesized in 5 steps from glyoxylic acid, and was found to exhibit acceptable sensitivities to impact, friction, and electrostatic discharge. The presence of the nitratoethyl nitramino (NENA) moiety, coupled with the high density (1.71 g cm-3 ) and superior calculated specific impulse (247.6 s) over the commonly employed gun propellant n-butyl NENA (density=1.22 g cm-3 , specific impulse=221 s), makes 1 a potential energetic plasticizer for next generation gun and rocket propellants. In addition, a modified procedure for the synthesis of dibromoformaldoxime (DBFO) was developed to provide this material in respectable yields on one mole scale. The safety considerations of DBFO are also highlighted, in which this compound sublimes, and must be handled with care, as it will cause burns upon contact with the skin.


Assuntos
Substâncias Explosivas , Isoxazóis , Plastificantes , Temperatura
3.
ACS Chem Biol ; 15(11): 2986-2995, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33035052

RESUMO

The chlorosulfolipids are amphiphilic natural products with stereochemically complex patterns of chlorination and sulfation. Despite their role in toxic shellfish poisoning, potential pharmacological activities, and unknown biological roles, they remain understudied due to the difficulties in purifying them from natural sources. The structure of these molecules, with a charged sulfate group in the middle of the hydrophobic chain, appears incompatible with the conventional lipid bilayer structure. Questions about chlorosulfolipids remain unanswered partly due to the unavailability of structural analogues with which to conduct structure-function studies. We approach this problem by combining enantioselective total synthesis and membrane biophysics. Using a combination of Langmuir pressure-area isotherms of lipid monolayers, fluorescence imaging of vesicles, mass spectrometry imaging, natural product isolation, small-angle X-ray scattering, and cryogenic electron microscopy, we show that danicalipin A (1) likely inserts into lipid bilayers in the headgroup region and alters their structure and phase behavior. Specifically, danicalipin A (1) thins the bilayer and fluidizes it, allowing even saturated lipid to form fluid bilayers. Lipid monolayers show similar fluidizing upon insertion of danicalipin A (1). Furthermore, we show that the halogenation of the molecule is critical for its membrane activity, likely due to sterically controlled conformational changes. Synthetic unchlorinated and monochlorinated analogues do not thin and fluidize lipid bilayers to the same extent as the natural product. Overall, this study sheds light on how amphiphilic small molecules interact with lipid bilayers and the importance of stereochemistry and halogenation for this interaction.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Ochromonas/química , Halogenação , Fluidez de Membrana , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa