Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
New Phytol ; 242(5): 1865-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538552

RESUMO

Programmed cell death (PCD) is fundamentally important for plant development, abiotic stress responses and immunity, but our understanding of its regulation remains fragmented. Building a stronger research community is required to accelerate progress in this area through knowledge exchange and constructive debate. In this Viewpoint, we aim to initiate a collective effort to integrate data across a diverse set of experimental models to facilitate characterisation of the fundamental mechanisms underlying plant PCD and ultimately aid the development of a new plant cell death classification system in the future. We also put forward our vision for the next decade of plant PCD research stemming from discussions held during the 31st New Phytologist workshop, 'The Life and Death Decisions of Plant Cells' that took place at University College Dublin in Ireland (14-15 June 2023). We convey the key areas of significant progress and possible future research directions identified, including resolving the spatiotemporal control of cell death, isolation of its molecular and genetic regulators, and harnessing technical advances for studying PCD events in plants. Further, we review the breadth of potential impacts of plant PCD research and highlight the promising new applications of findings from this dynamically evolving field.


Assuntos
Apoptose , Pesquisa , Plantas , Células Vegetais/fisiologia
2.
Plant Cell ; 30(9): 2116-2136, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30087208

RESUMO

Postgerminative mobilization of neutral lipids stored in seed lipid droplets (LDs) is preceded by the degradation of oleosins, the major structural LD proteins that stabilize LDs in dry seeds. We previously showed that Arabidopsis thaliana oleosins are marked for degradation by ubiquitination and are extracted from LDs before proteolysis. However, the mechanisms underlying the dislocation of these LD-anchored proteins from the LD monolayer are yet unknown. Here, we report that PUX10, a member of the plant UBX-domain containing (PUX) protein family, is an integral LD protein that associates with a subpopulation of LDs during seed germination. In pux10 mutant seedlings, PUX10 deficiency impaired the degradation of ubiquitinated oleosins and prevented the extraction of ubiquitinated oleosins from LDs. We also showed that PUX10 interacts with ubiquitin and CDC48A, the AAA ATPase Cell Division Cycle 48, through its UBA and UBX domains, respectively. Collectively, these results strongly suggest that PUX10 is an adaptor recruiting CDC48A to ubiquitinated oleosins, thus facilitating the dislocation of oleosins from LDs by the segregase activity of CDC48A. We propose that PUX10 and CDC48A are core components of a LD-associated degradation machinery, which we named the LD-associated degradation system. Importantly, PUX10 is also the first determinant of a LD subpopulation described in plants, suggesting functional differentiation of LDs in Arabidopsis seedlings.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gotículas Lipídicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Mutação , Sementes/metabolismo , Ubiquitina/metabolismo
3.
J Exp Bot ; 71(10): 2854-2861, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32080724

RESUMO

Autophagy is a universal mechanism that facilitates the degradation of unwanted cytoplasmic components in eukaryotic cells. In this review, we highlight recent developments in the investigation of the role of autophagy in lipid homeostasis in plants by comparison with algae, yeast, and animals. We consider the storage compartments that form the sources of lipids in plants, and the roles that autophagy plays in the synthesis of triacylglycerols and in the formation and maintenance of lipid droplets. We also consider the relationship between lipids and the biogenesis of autophagosomes, and the role of autophagy in the degradation of lipids in plants.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Autofagossomos , Lipídeos , Plantas
4.
New Phytol ; 223(3): 1461-1477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077612

RESUMO

Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and ß-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for ß-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Autofagia , Retículo Endoplasmático/metabolismo , Lipidômica , Mutação/genética , Peroxissomos/metabolismo , Proteômica , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Modelos Biológicos , Ácido Salicílico/metabolismo
5.
Plant Physiol ; 170(1): 367-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518342

RESUMO

The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Nicotiana/química , Esfingolipídeos/química , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glicoesfingolipídeos/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Moleculares , Fitosteróis/química , Fitosteróis/metabolismo , Folhas de Planta/química , Esfingolipídeos/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
6.
Plant Cell Environ ; 40(4): 585-598, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27272019

RESUMO

Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33 P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.


Assuntos
Diacilglicerol Quinase/metabolismo , Proteínas Fúngicas/farmacologia , NADPH Oxidases/metabolismo , Nicotiana/enzimologia , Explosão Respiratória , Linhagem Celular , Análise por Conglomerados , Ativação Enzimática/efeitos dos fármacos , Mutação com Ganho de Função/genética , Inativação Gênica , MicroRNAs/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Ácidos Fosfatídicos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Inibidores de Proteínas Quinases/farmacologia , Explosão Respiratória/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
7.
BMC Plant Biol ; 14: 255, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25267185

RESUMO

BACKGROUND: Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS: Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS: Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.


Assuntos
Membrana Celular/química , Medicago truncatula , Microssomos , Raízes de Plantas , Detergentes/química , Microdomínios da Membrana/química , Solubilidade
8.
Anal Bioanal Chem ; 406(4): 995-1010, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23887274

RESUMO

Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14-26 carbon atoms long in plants and 16-26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose-inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4-inositol phosphoceramide and hexose-(hexuronic acid)3-inositol phosphoceramide in Ulva lactuca.


Assuntos
Ceramidas/química , Fungos/química , Inositol/química , Plantas/química , Espectrometria de Massas , Estrutura Molecular
9.
Plants (Basel) ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891340

RESUMO

In plant models such as Arabidopsis thaliana, phosphatidic acid (PA), a key molecule of lipid signaling, was shown not only to be involved in stress responses, but also in plant development and nutrition. In this article, we highlight lipid signaling existing in crop species. Based on open access databases, we update the list of sequences encoding phospholipases D, phosphoinositide-dependent phospholipases C, and diacylglycerol-kinases, enzymes that lead to the production of PA. We show that structural features of these enzymes from model plants are conserved in equivalent proteins from selected crop species. We then present an in-depth discussion of the structural characteristics of these proteins before focusing on PA binding proteins. For the purpose of this article, we consider RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), the most documented PA target proteins. Finally, we present pioneering experiments that show, by different approaches such as monitoring of gene expression, use of pharmacological agents, ectopic over-expression of genes, and the creation of silenced mutants, that lipid signaling plays major roles in crop species. Finally, we present major open questions that require attention since we have only a perception of the peak of the iceberg when it comes to the exciting field of phospholipid signaling in plants.

10.
Data Brief ; 53: 110243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533111

RESUMO

The Unfolded Protein Response (UPR) is a retrograde, ER-to-nucleus, signalling pathway which is conserved across kingdoms. In plants, it contributes to development, reproduction, immunity and tolerance to abiotic stress. This RNA sequencing (RNA-seq) dataset was produced from 14-day-old Arabidopsis thaliana seedlings challenged by tunicamycin (Tm), an antibiotic inhibiting Asn-linked glycosylation in the endoplasmic reticulum (ER), causing an ER stress and eventually activating the UPR. Wild-type (WT) and a double mutant deficient for two main actors of the UPR (INOSITOL-REQUIRING ENZYME 1A and INOSITOL-REQUIRING ENZYME 1B) were used as genetic backgrounds in our experimental setup, allowing to distinguish among differentially-expressed genes (DEGs) which ones are dependent on or independent on IRE1s. Also, shoots and roots were harvested separately to determine organ-specific transcriptomic responses to Tm. Library and sequencing were performed using DNBseq™ technology by the Beijing Genomics Institute. Reads were mapped and quantified against the Arabidopsis genome. Differentially-expressed genes were identified using Rflomics upon filtering and normalization by the Trimmed Mean of M-value (TMM) method. While the genotype effect was weak under mock conditions (with a total of 182 DEGs in shoots and 195 DEGs in roots), the tunicamycin effect on each genotype was characterized by several hundred of DEGs in both shoots and roots. Among these genes, 872 and 563 genes were statistically up- and down-regulated in the shoot tissues of the double mutant when compared to those of WT, respectively. In roots of Tm-challenged seedlings, 425 and 439 genes were significantly up- and down-regulated in mutants with respect to WT. We believe that our dataset could be reused for investigating any biological questions linked to ER homeostasis and its role in plant physiology.

11.
Plant Physiol ; 160(2): 624-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22855937

RESUMO

The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Potexvirus/metabolismo , Solanum tuberosum/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/virologia , Dicroísmo Circular , Clonagem Molecular , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Fosfoproteínas/genética , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Potexvirus/patogenicidade , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Solanum tuberosum/genética , Solanum tuberosum/virologia , Relação Estrutura-Atividade
12.
Anal Bioanal Chem ; 403(9): 2745-55, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22576656

RESUMO

In eukaryotic organisms, sphingolipids are major structural lipids of biological membranes and perform additional essential functions as signalling molecules. While long-chain bases (LCB), the common precursor to all sphingolipid classes, is represented by only one major molecular species in animals and fungi, up to nine LCB have been found in plants. In the absence of genuine plant sphingolipid references required for proper quantification, we have reinvestigated and optimized a protocol destined to the quantification of total plant LCB that relies on the use of gas chromatography-mass spectrometry (GC-MS). This rapid three-step protocol sequentially involves (1) the release of LCB from biological samples using barium hydroxide solution, (2) their oxidation into aldehydes by metaperiodate, and (3) the subsequent identification/quantification of these aldehydes by GC-MS. It is simple and reliable and enables separation of aldehydes upon their stero-specificity. It further enables the quantification of total LCB from a wide variety of samples including yeast and animal cell cultures.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Extratos Vegetais/análise , Plantas/química , Esfingolipídeos/análise , Compostos de Bário/química , Cromatografia Gasosa-Espectrometria de Massas/economia , Oxirredução , Extratos Vegetais/isolamento & purificação , Sensibilidade e Especificidade , Esfingolipídeos/isolamento & purificação , Fatores de Tempo
13.
BMC Plant Biol ; 11: 144, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22023696

RESUMO

BACKGROUND: Leaf rust, which is caused by the fungus Hemileia vastatrix (Pucciniales), is a devastating disease that affects coffee plants (Coffea arabica L.). Disadvantages that are associated with currently developed phytoprotection approaches have recently led to the search for alternative strategies. These include genetic manipulations that constitutively activate disease resistance signaling pathways. However, molecular actors of such pathways still remain unknown in C. arabica. In this study, we have isolated and characterized the coffee NDR1 gene, whose Arabidopsis ortholog is a well-known master regulator of the hypersensitive response that is dependent on coiled-coil type R-proteins. RESULTS: Two highly homologous cDNAs coding for putative NDR1 proteins were identified and cloned from leaves of coffee plants. One of the candidate coding sequences was then expressed in the Arabidopsis knock-out null mutant ndr1-1. Upon a challenge with a specific strain of the bacterium Pseudomonas syringae (DC3000::AvrRpt2), analysis of both macroscopic symptoms and in planta microbial growth showed that the coffee cDNA was able to restore the resistance phenotype in the mutant genetic background. Thus, the cDNA was dubbed CaNDR1a (standing for Coffea arabica Non-race specific Disease Resistance 1a). Finally, biochemical and microscopy data were obtained that strongly suggest the mechanistic conservation of the NDR1-driven function within coffee and Arabidopsis plants. Using a transient expression system, it was indeed shown that the CaNDR1a protein, like its Arabidopsis counterpart, is localized to the plasma membrane, where it is possibly tethered by means of a GPI anchor. CONCLUSIONS: Our data provide molecular and genetic evidence for the identification of a novel functional NDR1 homolog in plants. As a key regulator initiating hypersensitive signalling pathways, CaNDR1 gene(s) might be target(s) of choice for manipulating the coffee innate immune system and achieving broad spectrum resistance to pathogens. Given the potential conservation of NDR1-dependent defense mechanisms between Arabidopsis and coffee plants, our work also suggests new ways to isolate the as-yet-unidentified R-gene(s) responsible for resistance to H. vastatrix.


Assuntos
Coffea/genética , Resistência à Doença , Doenças das Plantas/genética , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/imunologia , Basidiomycota/patogenicidade , Clonagem Molecular , Coffea/imunologia , Coffea/microbiologia , DNA Complementar/genética , Genes de Plantas , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Pseudomonas syringae/patogenicidade , Fatores de Transcrição/genética
14.
Rapid Commun Mass Spectrom ; 25(20): 3131-45, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-21953969

RESUMO

The structural characterization of Glycosyl-Inositol-Phospho-Ceramides (GIPCs), which are the main sphingolipids of plant tissues, is a critical step towards the understanding of their physiological function. After optimization of their extraction, numerous plant GIPCs have been characterized by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) full scan analysis of negative ions provides a quick overview of GIPC distribution. Clear differences were observed for the two plant models studied: six GIPC series bearing from two to seven saccharide units were detected in tobacco BY-2 cell extracts, whereas GIPCs extracted from A. thaliana cell cultures and leaves were less diverse, with a dominance of species containing only two saccharide units. The number of GIPC species was around 50 in A. thaliana and 120 in tobacco BY-2 cells. MALDI-MS/MS spectra gave access to detailed structural information relative to the ceramide moiety, the polar head, as well as the number and types of saccharide units. Once released from GIPCs, fatty acid chains and long-chain bases were analyzed by GC/MS to verify that all GIPC series were taken into account by the MALDI-MS/MS approach. ESI-MS/MS provided complementary information for the identification of isobaric species and fatty acid chains. Such a methodology, mostly relying on MALDI-MS/MS, should open new avenues to determine structure-function relationships between glycosphingolipids and membrane organization.


Assuntos
Ceramidas/química , Plantas/química , Espectrometria de Massas em Tandem/métodos , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/metabolismo , Ceramidas/análise , Oligossacarídeos/química , Folhas de Planta/química , Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Nicotiana/química , Nicotiana/citologia , Nicotiana/metabolismo
15.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063958

RESUMO

Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.


Assuntos
Autofagossomos/metabolismo , Autofagia , Metabolismo dos Lipídeos , Plantas/metabolismo , Estresse Fisiológico
16.
Plant Cell Environ ; 33(9): 1453-73, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20082668

RESUMO

Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.


Assuntos
Autofagia , Membrana Celular/fisiologia , Células Vegetais , Animais , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Resposta a Proteínas não Dobradas , Vacúolos/fisiologia , Leveduras/citologia
17.
Plant J ; 55(3): 514-25, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18410481

RESUMO

The interphase nucleus exists as a highly dynamic system, the physical properties of which have functional importance in gene regulation. Not only can gene expression be influenced by the local sequence context, but also by the architecture of the nucleus in three-dimensions (3D), and by the interactions between these levels via chromatin modifications. A challenging task is to resolve the complex interplay between sequence- and genome structure-based control mechanisms. Here, we created a collection of 277 Arabidopsis lines that allow the visual tracking of individual loci in living plants while comparing gene expression potential at these locations, via an identical reporter cassette. Our studies revealed regional gene silencing near a heterochromatin island, via DNA methylation, that is correlated with mobility constraint and nucleolar association. We also found an example of nucleolar association that does not correlate with gene suppression, suggesting that distinct mechanisms exist that can mediate interactions between chromatin and the nucleolus. These studies demonstrate the utility of this novel resource in unifying structural and functional studies towards a more comprehensive model of how global chromatin organization may coordinate gene expression over large scales.


Assuntos
Arabidopsis/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis , Genoma de Planta , Transcrição Gênica , Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Cromossomos de Plantas , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Inativação Gênica
18.
Plant Physiol Biochem ; 45(8): 596-606, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17611116

RESUMO

Hypersensitive reaction (HR) cell death of cotton to the incompatible race 18 from Xanthomonas campestris pathovar malvacearum (Xcm) is associated with 9S-lipoxygenase activity (LOX) responsible for lipid peroxidation. Here, we report the cloning of cotton (Gossypium hirsutum L.) LOX gene (GhLOX1) and the sequencing of its promoter. GhLOX1 was found to be highly expressed during Xcm induced HR. Sequence analysis showed that GhLOX1 is a putative 9-LOX, and GhLOX1 promoter contains SA and JA responsive elements. Investigation on LOX signalisation on cotyledons infiltrated with salicylic acid (SA), or incubated with methyl-jasmonate (MeJA) revealed that both treatments induced LOX activity and GhLOX1 gene expression. HR-like symptoms were observed when LOX substrates were then injected in treated (MeJA and SA) cotyledons or when Xcm compatible race 20 was inoculated on MeJA treated cotyledons. Together these results support the fact that GhLOX1 encodes a 9 LOX whose activity would be involved in cell death during cotton HR.


Assuntos
Gossypium/genética , Lipoxigenase/genética , Lipoxigenase/fisiologia , Xanthomonas/metabolismo , Acetatos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cotilédone/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Peróxido de Hidrogênio/química , Lipoxigenase/metabolismo , Dados de Sequência Molecular , Oxilipinas/metabolismo , Filogenia , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Ácido Salicílico/farmacologia , Homologia de Sequência de Aminoácidos
19.
Mol Plant Pathol ; 18(6): 825-836, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27291786

RESUMO

The phytohormone jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates, regulate many developmental processes, but are also involved in the response to numerous abiotic/biotic stresses. Thus far, powerful reverse genetic strategies employing perception, signalling or biosynthesis mutants have broadly contributed to our understanding of the role of JA in the plant stress response and development, as has the chemical gain-of-function approach based on exogenous application of the hormone. However, there is currently no method that allows for tightly controlled JA production in planta. By investigating the control of the JA synthesis pathway in bacteria-infected cotton (Gossypium hirsutum L.) plants, we identified a transcription factor (TF), named GhERF-IIb3, which acts as a positive regulator of the JA pathway. Expression of this well-conserved TF in cotton leaves was sufficient to produce in situ JA accumulation at physiological concentrations associated with an enhanced cotton defence response to bacterial infection.


Assuntos
Ciclopentanos/metabolismo , Gossypium/metabolismo , Gossypium/microbiologia , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
20.
Front Plant Sci ; 7: 1490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803703

RESUMO

Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa