Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 91(2): 218-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36114781

RESUMO

ß-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable ß-glucosidases, but without a clear understanding of their molecular mechanisms. Here, we probe by different molecular dynamics simulation approaches with distinct force fields and submitting the results to various computational analyses, the molecular bases of the thermostabilization of the Paenibacillus polymyxa GH1 ß-glucosidase by two-point mutations E96K (TR1) and M416I (TR2). Equilibrium molecular dynamic simulations (eMD) at different temperatures, principal component analysis (PCA), virtual docking, metadynamics (MetaDy), accelerated molecular dynamics (aMD), Poisson-Boltzmann surface analysis, grid inhomogeneous solvation theory and colony method estimation of conformational entropy allow to converge to the idea that the stabilization carried by both substitutions depend on different contributions of three classic mechanisms: (i) electrostatic surface stabilization; (ii) efficient isolation of the hydrophobic core from the solvent, with energetic advantages at the solvation cap; (iii) higher distribution of the protein dynamics at the mobile active site loops than at the protein core, with functional and entropic advantages. Mechanisms i and ii predominate for TR1, while in TR2, mechanism iii is dominant. Loop A integrity and loops A, C, D, and E dynamics play critical roles in such mechanisms. Comparison of the dynamic and topological changes observed between the thermostable mutants and the wildtype protein with amino acid co-evolutive networks and thermostabilizing hotspots from the literature allow inferring that the mechanisms here recovered can be related to the thermostability obtained by different substitutions along the whole family GH1. We hope the results and insights discussed here can be helpful for future rational approaches to the engineering of optimized ß-glucosidases for 2G-biofuel production for industry, biotechnology, and science.


Assuntos
Biocombustíveis , beta-Glucosidase , beta-Glucosidase/genética , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Substituição de Aminoácidos , Simulação de Dinâmica Molecular , Domínio Catalítico
2.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216040

RESUMO

The spread of antibiotic-resistant bacteria represents a substantial health threat. Current antibiotics act on a few metabolic pathways, facilitating resistance. Consequently, novel regulatory inhibition mechanisms are necessary. Riboswitches represent promising targets for antibacterial drugs. Purine riboswitches are interesting, since they play essential roles in the genetic regulation of bacterial metabolism. Among these, class I (2'-dG-I) and class II (2'-dG-II) are two different 2'-deoxyguanosine (2'-dG) riboswitches involved in the control of deoxyguanosine metabolism. However, high affinity for nucleosides involves local or distal modifications around the ligand-binding pocket, depending on the class. Therefore, it is crucial to understand these riboswitches' recognition mechanisms as antibiotic targets. In this work, we used a combination of computational biophysics approaches to investigate the structure, dynamics, and energy landscape of both 2'-dG classes bound to the nucleoside ligands, 2'-deoxyguanosine, and riboguanosine. Our results suggest that the stability and increased interactions in the three-way junction of 2'-dG riboswitches were associated with a higher nucleoside ligand affinity. Also, structural changes in the 2'-dG-II aptamers enable enhanced intramolecular communication. Overall, the 2'-dG-II riboswitch might be a promising drug design target due to its ability to recognize both cognate and noncognate ligands.


Assuntos
Antibacterianos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Desoxiguanosina/genética , Riboswitch/genética , Aptâmeros de Nucleotídeos/genética , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Purinas/metabolismo
3.
Phys Chem Chem Phys ; 23(6): 3993-4006, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554986

RESUMO

The activation of GABAA receptors by the neurotransmitter gamma-aminobutyric acid mediates the rapid inhibition response in the central nervous system of mammals. Many neurological and mental health disorders arise from alterations in the structure or function of these pentameric ion channels. GABAA receptors are targets for numerous drugs, including benzodiazepines, which bind to α1ß2γ2 GABAA receptors with high affinity to a site in the extracellular domain, between subunits α1 and γ2. It has been established experimentally that the binding of these drugs depends on the presence of one particular amino acid in the α1 subunit: histidine 102. However, the specific role it plays in the intermolecular interaction has not been elucidated. In this work, we applied in silico methods to understand whether certain protonation and rotamer states of α1His102 facilitate the binding of modulators. We analysed diazepam binding, a benzodiazepine, and the antagonist flumazenil to the GABAA receptor using molecular dynamics simulations and adaptive biasing force simulations. The binding free energy follows changes in the protonation state for both ligands, and rotameric states of α1His102 were specific for the different compounds, suggesting distinct preferences for positive allosteric modulators and antagonists. Moreover, in the presence of diazepam and favoured by a neutral tautomer, we identified a water molecule that links loops A, B, and C and may be relevant to the modulation mechanism.


Assuntos
Diazepam/metabolismo , Flumazenil/metabolismo , Moduladores GABAérgicos/metabolismo , Antagonistas de Receptores de GABA-A/metabolismo , Receptores de GABA-A/metabolismo , Histidina/química , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Receptores de GABA-A/química
4.
J Gen Virol ; 99(4): 536-548, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469689

RESUMO

Southeastern Brazil has been suffering a rapid expansion of a severe sylvatic yellow fever virus (YFV) outbreak since late 2016, which has reached one of the most populated zones in Brazil and South America, heretofore a yellow fever-free zone for more than 70 years. In the current study, we describe the complete genome of 12 YFV samples from mosquitoes, humans and non-human primates from the Brazilian 2017 epidemic. All of the YFV sequences belong to the modern lineage (sub-lineage 1E) of South American genotype I, having been circulating for several months prior to the December 2016 detection. Our data confirm that viral strains associated with the most severe YF epidemic in South America in the last 70 years display unique amino acid substitutions that are mainly located in highly conserved positions in non-structural proteins. Our data also corroborate that YFV has spread southward into Rio de Janeiro state following two main sylvatic dispersion routes that converged at the border of the great metropolitan area comprising nearly 12 million unvaccinated inhabitants. Our original results can help public health authorities to guide the surveillance, prophylaxis and control measures required to face such a severe epidemiological problem. Finally, it will also inspire other workers to further investigate the epidemiological and biological significance of the amino acid polymorphisms detected in the Brazilian 2017 YFV strains.


Assuntos
Febre Amarela/virologia , Vírus da Febre Amarela/genética , Brasil/epidemiologia , Surtos de Doenças , Genoma Viral , Genômica , Genótipo , Humanos , Modelos Moleculares , Filogenia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Febre Amarela/epidemiologia , Vírus da Febre Amarela/química , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação
5.
Mem Inst Oswaldo Cruz ; 112(9): 617-625, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28902287

RESUMO

BACKGROUND: Leishmanolysins have been described as important parasite virulence factors because of their roles in the infection of promastigotes and resistance to host's defenses. Leishmania (Viannia) braziliensis contains several leishmanolysin genes in its genome, especially in chromosome 10. However, the functional impact of such diversity is not understood, but may be attributed partially to the lack of structural data for proteins from this parasite. OBJECTIVES: This works aims to compare leishmanolysin sequences from L. (V.) braziliensis and to understand how the diversity impacts in their structural and dynamic features. METHODS: Leishmanolysin sequences were retrieved from GeneDB. Subsequently, 3D models were built using comparative modeling methods and their dynamical behavior was studied using molecular dynamic simulations. FINDINGS: We identified three subgroups of leishmanolysins according to sequence variations. These differences directly affect the electrostatic properties of leishmanolysins and the geometry of their active sites. We identified two levels of structural heterogeneity that might be related to the ability of promastigotes to interact with a broad range of substrates. MAIN CONCLUSION: Altogether, the structural plasticity of leishmanolysins may constitute an important evolutionary adaptation rarely explored when considering the virulence of L. (V.) braziliensis parasites.


Assuntos
Variação Genética , Leishmania braziliensis/genética , Metaloendopeptidases/genética , Conformação Proteica , Cromossomos , Humanos , Modelos Moleculares
6.
Proteins ; 84(4): 473-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26798994

RESUMO

New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å.


Assuntos
Cisteína Proteases/química , Epitopos/química , Antígenos de Histocompatibilidade Classe I/química , Leishmania braziliensis/química , Peptídeos/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína Proteases/genética , Cisteína Proteases/imunologia , Epitopos/genética , Epitopos/imunologia , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Simulação de Dinâmica Molecular , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Ressonância de Plasmônio de Superfície , Termodinâmica
7.
J Chem Inf Model ; 56(12): 2495-2506, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024405

RESUMO

In this work, we propose a deep learning approach to improve docking-based virtual screening. The deep neural network that is introduced, DeepVS, uses the output of a docking program and learns how to extract relevant features from basic data such as atom and residues types obtained from protein-ligand complexes. Our approach introduces the use of atom and amino acid embeddings and implements an effective way of creating distributed vector representations of protein-ligand complexes by modeling the compound as a set of atom contexts that is further processed by a convolutional layer. One of the main advantages of the proposed method is that it does not require feature engineering. We evaluate DeepVS on the Directory of Useful Decoys (DUD), using the output of two docking programs: Autodock Vina1.1.2 and Dock 6.6. Using a strict evaluation with leave-one-out cross-validation, DeepVS outperforms the docking programs, with regard to both AUC ROC and enrichment factor. Moreover, using the output of Autodock Vina1.1.2, DeepVS achieves an AUC ROC of 0.81, which, to the best of our knowledge, is the best AUC reported so far for virtual screening using the 40 receptors from the DUD.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Simulação de Acoplamento Molecular/métodos , Redes Neurais de Computação , Software , Algoritmos , Humanos , Ligantes , Proteínas/metabolismo , Curva ROC
8.
Mol Pharmacol ; 88(5): 949-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26330549

RESUMO

Recognition of bacterial lipopolysaccharide (LPS) by innate immune system is mediated by the cluster of differentiation 14/Toll-like receptor 4/myeloid differentiation protein 2 (MD-2) complex. In this study, we investigated the modulatory effect of gedunin, a limonoid from species of the Meliaceae family described as a heat shock protein Hsp90 inhibitor, on LPS-induced response in immortalized murine macrophages. The pretreatment of wild-type (WT) macrophages with gedunin (0.01-100 µM, noncytotoxic concentrations) inhibited LPS (50 ng/ml)-induced calcium influx, tumor necrosis factor-α, and nitric oxide production in a concentration-dependent manner. The selective effect of gedunin on MyD88-adapter-like/myeloid differentiation primary response 88- and TRIF-related adaptor molecule/TIR domain-containing adapter-inducing interferon-ß-dependent signaling pathways was further investigated. The pretreatment of WT, TIR domain-containing adapter-inducing interferon-ß knockout, and MyD88 adapter-like knockout macrophages with gedunin (10 µM) significantly inhibited LPS (50 ng/ml)-induced tumor necrosis factor-α and interleukin-6 production, at 6 hours and 24 hours, suggesting that gedunin modulates a common event between both signaling pathways. Furthermore, gedunin (10 µM) inhibited LPS-induced prostaglandin E2 production, cyclooxygenase-2 expression, and nuclear factor κB translocation into the nucleus of WT macrophages, demonstrating a wide-range effect of this chemical compound. In addition to the ability to inhibit LPS-induced proinflammatory mediators, gedunin also triggered anti-inflammatory factors interleukin-10, heme oxygenase-1, and Hsp70 in macrophages stimulated or not with LPS. In silico modeling studies revealed that gedunin efficiently docked into the MD-2 LPS binding site, a phenomenon further confirmed by surface plasmon resonance. Our results reveal that, in addition to Hsp90 modulation, gedunin acts as a competitive inhibitor of LPS, blocking the formation of the Toll-like receptor 4/MD-2/LPS complex.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Limoninas/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Antígeno 96 de Linfócito/metabolismo , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Sítios de Ligação , Células Cultivadas , Citocinas/biossíntese , Dinoprostona/biossíntese , Relação Dose-Resposta a Droga , Limoninas/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/química , Macrófagos/efeitos dos fármacos , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptores de Interleucina-1/fisiologia , Receptor 4 Toll-Like/fisiologia
9.
Antimicrob Agents Chemother ; 59(4): 1910-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583728

RESUMO

Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm(2)), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm(2)) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm(2)). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compound's effects on the parasite.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , Naftoquinonas/farmacologia , Inibidores de Serina Proteinase/farmacologia , Animais , Antipaína/farmacologia , Simulação por Computador , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Serina Endopeptidases/metabolismo
10.
Mem Inst Oswaldo Cruz ; 110(7): 847-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26560977

RESUMO

Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.


Assuntos
Fármacos Anti-HIV/química , Desenho Assistido por Computador , Desenho de Fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Humanos , Modelos Biológicos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Inibidores da Transcriptase Reversa/química
11.
Mem Inst Oswaldo Cruz ; 109(3): 315-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24676659

RESUMO

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Assuntos
Nitrorredutases/efeitos dos fármacos , Tiadiazóis , Triazóis , Tripanossomicidas , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Animais , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrorredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia , Tiadiazóis/toxicidade , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia , Triazóis/toxicidade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos
12.
Int J Mol Sci ; 15(3): 4531-49, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24637936

RESUMO

Currently, adenosine 5'-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.


Assuntos
Trifosfato de Adenosina/química , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores Purinérgicos P2X/química , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Receptores Purinérgicos P2X/metabolismo
13.
J Infect Dis ; 208(1): 120-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23547143

RESUMO

Conflicting findings about the association between leprosy and TLR1 variants N248S and I602S have been reported. Here, we performed case-control and family based studies, followed by replication in 2 case-control populations from Brazil, involving 3162 individuals. Results indicated an association between TLR1 248S and leprosy in the case-control study (SS genotype odds ratio [OR], 1.81; P = .004) and the family based study (z = 2.02; P = .05). This association was consistently replicated in other populations (combined OR, 1.51; P < .001), corroborating the finding that 248S is a susceptibility factor for leprosy. Additionally, we demonstrated that peripheral blood mononuclear cells (PBMCs) carrying 248S produce a lower tumor necrosis factor/interleukin-10 ratio when stimulated with Mycobacterium leprae but not with lipopolysaccharide or PAM3cysK4. The same effect was observed after infection of PBMCs with the Moreau strain of bacillus Calmette-Guerin but not after infection with other strains. Finally, molecular dynamics simulations indicated that the Toll-like receptor 1 structure containing 248S amino acid is different from the structure containing 248N. Our results suggest that TLR1 248S is associated with an increased risk for leprosy, consistent with its hypoimmune regulatory function.


Assuntos
Hanseníase/genética , Mycobacterium leprae/imunologia , Polimorfismo de Nucleotídeo Único/genética , Receptor 1 Toll-Like/genética , Adulto , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Frequência do Gene/genética , Genótipo , Haplótipos , Heterozigoto , Humanos , Imunidade/genética , Hanseníase/imunologia , Leucócitos Mononucleares/imunologia , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/fisiologia , Fatores de Risco , Receptor 1 Toll-Like/fisiologia
14.
J Biomol Struct Dyn ; 42(6): 3128-3144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37216328

RESUMO

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário , Simulação de Dinâmica Molecular , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário/química , Receptores do Hormônio Hipofisário/metabolismo , Sistema Nervoso
15.
Appl Clin Genet ; 15: 153-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304179

RESUMO

Purpose: Noonan syndrome and related disorders are genetic conditions affecting 1:1000-2000 individuals. Variants causing hyperactivation of the RAS/MAPK pathway lead to phenotypic overlap between syndromes, in addition to an increased risk of pediatric tumors. DNA sequencing methods have been optimized to provide a molecular diagnosis for clinical and genetic heterogeneity conditions. This work aimed to investigate the genetic basis in RASopathy patients through Next Generation Sequencing in a Reference Center for Rare Diseases (IFF/Fiocruz) and implement the precision medicine at a public health institute in Brazil. Patients and Methods: This study comprises 26 cases with clinical suspicion of RASopathies. Sanger sequencing was used to screen variants in exons usually affected in the PTPN11 and HRAS genes for cases with clinical features of Noonan and Costello syndrome, respectively. Posteriorly, negative and new cases with clinical suspicion of RASopathy were analyzed by clinical or whole-exome sequencing. Results: Molecular analysis revealed recurrent variants and a novel LZTR1 missense variant: 24 unrelated individuals with pathogenic variants [PTPN11(11), NF1(2), SOS1(2), SHOC2(2), HRAS(1), BRAF(1), LZTR (1), RAF1(1), KRAS(1), RIT1(1), a patient with co-occurrence of PTPN11 and NF1 mutations (1)]; familial cases carrying a known pathogenic variant in PTPN11 (mother-two children), and a previously undescribed paternally inherited variant in LZTR1. The comparative modeling analysis of the novel LZTR1 variant p.Pro225Leu showed local and global changes in the secondary and tertiary structures, showing a decrease of about 1% in the ß-sheet content. Furthermore, evolutionary conservation indicated that Pro225 is in a highly conserved region, as observed for known dominant pathogenic variants in this protein. Conclusion: Bringing precision medicine through NGS towards congenital syndromes promotes a better understanding of complex clinical and/or undiagnosed cases. The National Policy for Rare Diseases in Brazil emphasizes the importance of incorporating and optimizing diagnostic methodologies in the Unified Brazilian Health System (SUS). Therefore, this work is an important step for the NGS inclusion in diagnostic genetic routine in the public health system.

16.
ACS Chem Neurosci ; 11(24): 4289-4300, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33201672

RESUMO

In recent years, therapeutic compounds derived from phytocannabinoids have brought renewed attention to the benefits they offer to ameliorate chronic disease symptoms. Among cannabinoids, tetrahydrocannabinol (THC) is a well-known component of the Cannabis plant, whose active principles have been studied through the years. Another psychoactive phytocannabinoid, derived from liverworts Radula, perrottetinene (PET), has created interest, especially as a pharmaceutical product and for its legal recreational use. Unfortunately, so far, the interaction mode of these compounds at the type 1 cannabinoid receptors (CB1R) binding site remains unknown, and no experimental three-dimensional structure in complex with THC or PET is available in the Protein Data Bank. Today, many computational methodologies can assist in this crusade and help unveil how these molecules bind, based on the already known pose of a structurally similar compound. In this work, we aim to elucidate the binding mode of THC and PET molecules in both cis and trans conformers, using a combination of several computational methodologies, including molecular docking, molecular dynamics, free energy calculations, and protein-energy network studies. We found that THC and PET interact similarly with the CB1R, in a different conformation depending on the considered diastereomer. We have observed that cis ligands adopted a half-chair conformation of the cycle ring containing the dimethyl group, assuming an axial or equatorial conformation producing a different induced fitting of the surrounding residues compared with trans ligands, with higher interaction energy than the trans conformer. For PET, we have seen that Trp-279 and Trp-356 have a marked influence on the binding. After binding, Trp-279 accommodates its side chain to better interact with the PET's terminal phenyl group, disturbing CB1R residues communication. The interaction with Trp-356 might impair the activation of CB1R and can influence the binding of PET as a partial agonist. Understanding the PET association with CB1R from a molecular perspective can offer a glimpse of preventing potential toxicological or recreational effects since it is an attractive lead for drug development with fewer side effects than trans-THC.


Assuntos
Dronabinol , Preparações Farmacêuticas , Simulação por Computador , Dronabinol/análogos & derivados , Dronabinol/farmacologia , Simulação de Acoplamento Molecular , Receptor CB1 de Canabinoide
17.
Virus Res ; 278: 197867, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31972246

RESUMO

Infections produced by hepaciviruses have been associated with liver disease in horses. Currently, at least three viruses belonging to the Flaviviridae family are capable of producing a chronic infection in equines: non-primate hepacivirus (NPHV), Theiler's disease-associated virus (TDAV), and equine pegivirus (EPgV). The RNA-dependent RNA polymerases of viruses (RdRp) (NS5 protein), from the flavivirus family, use de novo RNA synthesis to initiate synthesis. The two antiviral drugs currently used to treat hepatitis C (HCV), sofosbuvir and dasabuvir, act on the viral NS5B polymerase as nucleoside and non-nucleoside inhibitors, respectively. Both drugs have shown significant clinical inhibition of viral response. In this work, we aimed to model the NS5B polymerase of the equine hepacivirus (EHCV) subtypes 1 and 2, TDAV and EPgV, to assess whether current direct-acting antiviral drugs against HCV interact with these proteins. Crystal structures of HCV-NS5B were used as templates for modeling target sequences in both conformations (open and closed). Also, molecular docking of sofosbuvir and dasabuvir were performed to predict their possible binding modes at the modeled NS5B polymerase binding sites. We observed that the NS5B models of the EHCV and EPgV shared well-conserved 3D structures to HCV-NS5B and other RdRps, suggesting functional conservation. Interactions of EHCV subtypes 1, 2 and TDAV polymerases with sofosbuvir showed a similar molecular interaction pattern compared to HCV-NS5B, while interactions with dasabuvir were less conserved. In silico studies of molecular interactions between these modeled structures and sofosbuvir suggest that this compound could be efficient in combating equine pathogens, thus contributing to animal welfare.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/química , Pegivirus/química , Proteínas não Estruturais Virais/química , Animais , Antivirais/química , Inibidores Enzimáticos/química , Hepacivirus/efeitos dos fármacos , Cavalos/virologia , Simulação de Acoplamento Molecular , Pegivirus/efeitos dos fármacos , Alinhamento de Sequência
18.
Front Microbiol ; 11: 624121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510737

RESUMO

Tuberculosis is a world widespread disease, caused by Mycobacterium tuberculosis (M.tb). Although considered an obligate aerobe, this organism can resist life-limiting conditions such as microaerophily mainly due to its set of enzymes responsible for energy production and coenzyme restoration under these conditions. One of these enzymes is fumarate reductase, an heterotetrameric complex composed of a catalytic (FrdA), an iron-sulfur cluster (FrdB) and two transmembrane (FrdC and FrdD) subunits involved in anaerobic respiration and important for the maintenance of membrane potential. In this work, aiming to further characterize this enzyme function in mycobacteria, we analyzed the expression of FrdB-containing proteins in M.tb and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) Moreau, the Brazilian vaccine strain against tuberculosis. We identified three isoforms in both mycobacteria, two of them corresponding to the predicted encoded polypeptides of M.tb (27 kDa) and BCG Moreau (40 kDa) frd sequences, as due to an insertion on the latter's operon a fused FrdBC protein is expected. The third 52 kDa band can be explained by a transcriptional slippage event, typically occurring when mutation arises in a repetitive region within a coding sequence, thought to reduce its impact allowing the production of both native and variant forms. Comparative modeling of the M.tb and BCG Moreau predicted protein complexes allowed the detection of subtle overall differences, showing a high degree of structure and maybe functional resemblance among them. Axenic growth and macrophage infection assays show that the frd locus is important for proper bacterial development in both scenarios, and that both M.tb's and BCG Moreau's alleles can partially revert the hampered phenotype of the knockout strain. Altogether, our results show that the frdABCD operon of Mycobacteria may have evolved to possess other yet non-described functions, such as those necessary during aerobic logarithmic growth and early stage steps of infection.

19.
Biophys J ; 96(3): 951-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19186133

RESUMO

Scanning experiments have shown that the putative TM2 domain of the P2X(7) receptor (P2X(7)R) lines the ionic pore. However, none has identified an alpha-helix structure, the paradigmatic secondary structure of ion channels in mammalian cells. In addition, some researchers have suggested a beta-sheet conformation in the TM2 domain of P2X(2). These data led us to investigate a new architecture within the P2X receptor family. P2X(7)R is considered an intriguing receptor because its activation induces nonselective large pore formation, in contrast to the majority of other ionic channel proteins in mammals. This receptor has two states: a low-conductance channel (approximately 10 pS) and a large pore (> 400 pS). To our knowledge, one fundamental question remains unanswered: Are the P2X(7)R channel and the pore itself the same entity or are they different structures? There are no structural data to help solve this question. Thus, we investigated the hydrophobic M2 domain with the aim of predicting the fitted position and the secondary structure of the TM2 segment from human P2X(7)R (hP2X(7)R). We provide evidence for a beta-sheet conformation, using bioinformatics algorithms and molecular-dynamics simulation in conjunction with circular dichroism in different environments and Fourier transform infrared spectroscopy. In summary, our study suggests the possibility that a segment composed of residues from part of the M2 domain and part of the putative TM2 segment of P2X(7)R is partially folded in a beta-sheet conformation, and may play an important role in channel/pore formation associated with P2X(7)R activation. It is important to note that most nonselective large pores have a transmembrane beta-sheet conformation. Thus, this study may lead to a paradigmatic change in the P2X(7)R field and/or raise new questions about this issue.


Assuntos
Modelos Moleculares , Receptores Purinérgicos P2/química , Sequência de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Dicroísmo Circular , Humanos , Dados de Sequência Molecular , Porosidade , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Espectroscopia de Infravermelho com Transformada de Fourier , Canais de Ânion Dependentes de Voltagem/metabolismo
20.
Viruses ; 11(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366046

RESUMO

Hepatitis C virus genotype 1a (HCV-1a) comprises clades I and II. The Q80K polymorphism is found predominantly in clade I but rarely in clade II. Here, we investigated whether natural polymorphisms in HCV-1a clade II entailed structural protein changes when occurrence of the Q80K variant was simulated. Based on HCV-1a clade I and II protein sequences, the structure of the HCV-1a Q80K mutant NS3-4A was obtained by comparative modeling. Its physicochemical properties were studied by molecular dynamics simulations and network analysis. Results demonstrate that, in the presence of the K80 variant, clade II protease polymorphisms A91 and S/G174 led to variations in hydrogen bond occupancies. Structural analyses revealed differences in (i) flexibility of the H57 catalytic residue on the NS3 protease and (ii) correlations between amino acids on the NS3 protease and the NS4A cofactor. The latter indicated possible destabilization of interactions, resulting in increased separation of these proteins. The present findings describe how the relationships between different HCV-1a NS3 protease amino acid residues could affect the appearance of viral variants and the existence of distinct genetic barriers to HCV-1a isolates.


Assuntos
Hepacivirus/genética , Polimorfismo Genético , Serina Proteases/química , Serina Proteases/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos , Redes Reguladoras de Genes , Genótipo , Hepacivirus/enzimologia , Modelos Moleculares , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa