Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677517

RESUMO

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Assuntos
Mecanotransdução Celular , Interferência de RNA , Receptores Acoplados a Proteínas G/fisiologia , Animais , Materiais Biocompatíveis , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistência ao Cisalhamento , Estresse Mecânico , Resistência Vascular
2.
Cell ; 164(3): 499-511, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824658

RESUMO

The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ.


Assuntos
Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Células HeLa , Humanos , Canais Iônicos/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Osmose
3.
Proc Natl Acad Sci U S A ; 111(28): 10347-52, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958852

RESUMO

Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.


Assuntos
Sistema Cardiovascular/embriologia , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Animais , Sistema Cardiovascular/citologia , Células Endoteliais/citologia , Canais Iônicos/genética , Camundongos , Camundongos Transgênicos
4.
Mol Pharmacol ; 89(1): 176-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494861

RESUMO

The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology.


Assuntos
Bloqueio Cardíaco/tratamento farmacológico , Bloqueio Cardíaco/genética , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Bloqueio Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Esfingosina-1-Fosfato
5.
Curr Top Microbiol Immunol ; 378: 55-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24728593

RESUMO

The zwitterionic lysophospholipid Sphingosine 1-Phosphate (S1P) is a pleiotropic mediator of physiology and pathology. The synthesis, transport, and degradation of S1P are tightly regulated to ensure that S1P is present in the proper concentrations in the proper location. The binding of S1P to five G protein-coupled S1P receptors regulates many physiological systems, particularly the immune and vascular systems. Our understanding of the functions of S1P has been aided by the tractability of the system to both chemical and genetic manipulation. Chemical modulators have been generated to affect most of the known components of S1P biology, including agonists of S1P receptors and inhibitors of enzymes regulating S1P production and degradation. Genetic knockouts and manipulations have been similarly engineered to disrupt the functions of individual S1P receptors or enzymes involved in S1P metabolism. This chapter will focus on the development and utilization of these chemical and genetic tools to explore the complex biology surrounding S1P and its receptors, with particular attention paid to the in vivo findings that these tools have allowed for.


Assuntos
Receptores de Lisoesfingolipídeo/química , Receptores de Lisoesfingolipídeo/genética , Animais , Técnicas Genéticas , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo
6.
Mol Pharmacol ; 83(2): 316-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204443

RESUMO

Sphingosine 1-phosphate receptor 1 (S1P(1)) is a G protein-coupled receptor that is critical for proper lymphocyte development and recirculation. Agonists to S1P(1) are currently in use clinically for the treatment of multiple sclerosis, and these drugs may act on both S1P(1) expressed on lymphocytes and S1P(1) expressed within the central nervous system. Agonists to S1P(1) and deficiency in S1P(1) both cause lymphocyte sequestration in the lymph nodes. In the present study, we show that S1P(1) antagonism induces lymphocyte sequestration in the lymph nodes similar to that observed with S1P(1) agonists while upregulating S1P(1) on lymphocytes and endothelial cells. Additionally, we show that S1P(1) antagonism reverses experimental autoimmune encephalomyelitis in mice without acting on S1P(1) expressed within the central nervous system, demonstrating that lymphocyte sequestration via S1P(1) antagonism is sufficient to alleviate autoimmune pathology.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Imunossupressores/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Animais , Células CHO , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Cricetinae , Encefalomielite Autoimune Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Lisoesfingolipídeo/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Nat Chem Biol ; 7(5): 254-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21445057

RESUMO

Sphingosine 1-phosphate receptor 1 (S1P(1)) is critical for lymphocyte recirculation and is a clinical target for treatment of multiple sclerosis. By generating a short-duration S1P(1) agonist and mice in which fluorescently tagged S1P(1) replaces wild-type receptor, we elucidate physiological and agonist-perturbed changes in expression of S1P(1) at a subcellular level in vivo. We demonstrate differential downregulation of S1P(1) on lymphocytes and endothelia after agonist treatment.


Assuntos
Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/química , Esclerose Múltipla/tratamento farmacológico , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/uso terapêutico , Animais , Regulação para Baixo/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Receptores de Lisoesfingolipídeo/metabolismo , Fatores de Tempo
8.
Am J Physiol Cell Physiol ; 302(10): C1460-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357735

RESUMO

Lymph nodes are highly organized structures specialized for efficient regulation of adaptive immunity. The blood and lymphatic systems within a lymph node play essential roles by providing functionally distinct environments for lymphocyte entry and egress, respectively. Direct imaging and measurement of vascular microenvironments by intravital multiphoton microscopy provide anatomical and mechanistic insights into the essential events of lymphocyte trafficking. Lymphocytes, blood endothelial cells, and lymphatic endothelial cells express sphingosine 1-phosphate receptor 1, a key G protein-coupled receptor regulating cellular egress and a modulator of endothelial permeability. Here we report the development of a differential vascular labeling (DVL) technique in which a single intravenous injection of a fluorescent dextran, in combination with fluorescent semiconductor quantum dot particles, differentially labels multiple blood and lymphatic compartments in a manner dependent on the size of the fluorescent particle used. Thus DVL allows measurement of endothelial integrity in multiple vascular compartments and the affects or pharmacological manipulation in vascular integrity. In addition, this technique allows for real-time observation of lymphocyte trafficking across physiological barriers differentiated by DVL. Last, single-field fluid movement dynamics can be derived, allowing for the simultaneous determination of fluid flow rates in diverse blood and lymphatic compartments.


Assuntos
Sistemas Computacionais , Células Endoteliais/fisiologia , Líquido Extracelular/química , Vasos Linfáticos/química , Fluxo Sanguíneo Regional , Coloração e Rotulagem/métodos , Animais , Células Endoteliais/química , Líquido Extracelular/fisiologia , Linfonodos/irrigação sanguínea , Linfonodos/química , Linfonodos/fisiologia , Vasos Linfáticos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Lisoesfingolipídeo/biossíntese , Receptores de Lisoesfingolipídeo/sangue , Fluxo Sanguíneo Regional/fisiologia
9.
Mol Pharmacol ; 81(2): 166-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22031473

RESUMO

Multiple sclerosis (MS) therapies modulate T-cell autoimmunity in the central nervous system (CNS) but may exacerbate latent infections. Fingolimod, a nonselective sphingosine-1-phosphate (S1P) receptor agonist that induces sustained lymphopenia and accumulates in the CNS, represents a new treatment modality for MS. We hypothesized that sustained lymphopenia would not be required for efficacy and that a selective, CNS-penetrant, peripherally short-acting, S1P(1) agonist would show full efficacy in a mouse MS model. Using daily treatment with 10 mg/kg 2-(4-(5-(3,4-diethoxyphenyl)-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl amino)ethanol (CYM-5442) at the onset of clinical signs in myelin oligodendrocyte glycoprotein MOG(35-55)- induced experimental allergic encephalomyelitis (EAE), we assessed clinical scores, CNS cellular infiltration, demyelination, and gliosis for 12 days with CYM-5442, vehicle, or fingolimod. CYM-5442 levels in CNS and plasma were determined at experiment termination, and blood lymphopenia was measured 3 and 24 h after the last injection. Plasma levels of cytokines were assayed at the end of the protocol. Changes in S1P(1)-enhanced green fluorescent protein expression on neurons and astrocytes during active EAE and upon CYM-5442 treatment were quantified with flow cytometry and Western blotting by using native-locus enhanced green fluorescent protein-tagged S1P(1) mice. S1P(1) agonism alone reduced pathological features as did fingolimod (maximally lymphopenic throughout), despite full reversal of lymphopenia within each dosing interval. CYM-5442 levels in CNS but not in plasma were sustained. Neuronal and astrocytic S1P(1) expression in EAE was suppressed by CYM-5442 treatment, relative to vehicle, and levels of key cytokines, such as interleukin 17A, were also significantly reduced in drug-treated mice. S1P(1)-selective agonists that induce reversible lymphopenia while persisting in the CNS may be effective MS treatments.


Assuntos
Linfopenia/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Receptores de Lisoesfingolipídeo/agonistas , Animais , Sistema Nervoso Central/metabolismo , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Cloridrato de Fingolimode , Imunossupressores , Indanos , Camundongos , Oxidiazóis , Propilenoglicóis/uso terapêutico , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/uso terapêutico
10.
Sci Adv ; 7(28)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233878

RESUMO

T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor-ß (TGFß) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/patologia , Canais Iônicos/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th1
11.
Elife ; 72018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382938

RESUMO

Mechanically activated (MA) ion channels convert physical forces into electrical signals, and are essential for eukaryotic physiology. Despite their importance, few bona-fide MA channels have been described in plants and animals. Here, we show that various members of the OSCA and TMEM63 family of proteins from plants, flies, and mammals confer mechanosensitivity to naïve cells. We conclusively demonstrate that OSCA1.2, one of the Arabidopsis thaliana OSCA proteins, is an inherently mechanosensitive, pore-forming ion channel. Our results suggest that OSCA/TMEM63 proteins are the largest family of MA ion channels identified, and are conserved across eukaryotes. Our findings will enable studies to gain deep insight into molecular mechanisms of MA channel gating, and will facilitate a better understanding of mechanosensory processes in vivo across plants and animals.


Assuntos
Sequência Conservada , Evolução Molecular , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular , Animais , Arabidopsis , Fenômenos Biofísicos , Gadolínio/farmacologia , Células HEK293 , Humanos , Lipossomos , Concentração Osmolar
12.
Elife ; 72018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095067

RESUMO

SWELL1 (LRRC8A) is the only essential subunit of the Volume Regulated Anion Channel (VRAC), which regulates cellular volume homeostasis and is activated by hypotonic solutions. SWELL1, together with four other LRRC8 family members, potentially forms a vastly heterogeneous cohort of VRAC channels with different properties; however, SWELL1 alone is also functional. Here, we report a high-resolution cryo-electron microscopy structure of full-length human homo-hexameric SWELL1. The structure reveals a trimer of dimers assembly with symmetry mismatch between the pore-forming domain and the cytosolic leucine-rich repeat (LRR) domains. Importantly, mutational analysis demonstrates that a charged residue at the narrowest constriction of the homomeric channel is an important pore determinant of heteromeric VRAC. Additionally, a mutation in the flexible N-terminal portion of SWELL1 affects pore properties, suggesting a putative link between intracellular structures and channel regulation. This structure provides a scaffold for further dissecting the heterogeneity and mechanism of activation of VRAC.


Assuntos
Proteínas de Membrana/química , Multimerização Proteica/genética , Relação Estrutura-Atividade , Canais de Ânion Dependentes de Voltagem/química , Aminoácidos/química , Aminoácidos/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Família Multigênica , Mutação , Estrutura Quaternária de Proteína , Canais de Ânion Dependentes de Voltagem/genética
13.
Neuron ; 94(2): 266-270.e3, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426961

RESUMO

A gold standard for characterizing mechanically activated (MA) currents is via heterologous expression of candidate channels in naive cells. Two recent studies described MA channels using this paradigm. TMEM150c was proposed to be a component of an MA channel partly based on a heterologous expression approach (Hong et al., 2016). In another study, Piezo1's N-terminal "propeller" domain was proposed to constitute an intrinsic mechanosensitive module based on expression of a chimera between a pore-forming domain of the mechanically insensitive ASIC1 channel and Piezo1 (Zhao et al., 2016). When we attempted to replicate these results, we found each construct conferred modest MA currents in a small fraction of naive HEK cells similar to the published work. Strikingly, these MA currents were not detected in cells in which endogenous Piezo1 was CRISPR/Cas9 inactivated. These results highlight the importance of choosing cells lacking endogenous MA channels to assay the mechanotransduction properties of various proteins. This Matters Arising paper is in response to Hong et al. (2016) and Zhao et al. (2016) in Neuron. See also the response papers by Hong et al. (2017) and Zhao et al. (2017) published concurrently with this Matters Arising.


Assuntos
Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Neurônios/metabolismo , Transporte Biológico , Linhagem Celular , Humanos , Mutagênese Insercional/métodos
14.
Elife ; 42015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26001274

RESUMO

Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis.


Assuntos
Cálcio/metabolismo , Eritrócitos/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Western Blotting , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Contagem de Eritrócitos , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Citometria de Fluxo , Fluorescência , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Mutação/genética , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Nat Commun ; 6: 8329, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26387913

RESUMO

Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema.


Assuntos
Anemia Hemolítica Congênita/metabolismo , Hidropisia Fetal/metabolismo , Canais Iônicos/metabolismo , Doenças Linfáticas/metabolismo , Sequência de Aminoácidos , Anemia Hemolítica Congênita/genética , Pré-Escolar , Eritrócitos/metabolismo , Feminino , Genes Recessivos , Humanos , Hidropisia Fetal/genética , Lactente , Canais Iônicos/química , Canais Iônicos/genética , Doenças Linfáticas/genética , Masculino , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Alinhamento de Sequência
17.
Science ; 335(6070): 851-5, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22344443

RESUMO

The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P(1)-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P(1), resulting in the modulation of immune and stromal cell responses.


Assuntos
Receptores de Lisoesfingolipídeo/química , Anilidas/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Muramidase/química , Mutagênese , Organofosfonatos/química , Conformação Proteica , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
18.
Trends Immunol ; 28(3): 102-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17276731

RESUMO

The lysophospholipid sphingosine 1-phosphate (S1P) is a pleiotropic signaling lipid present constitutively in plasma, and secreted locally at elevated concentrations at sites of inflammation. S1P maintains essential variable homeostatic functions in addition to inducing pathophysiology through the activation of five specific high-affinity G-protein-coupled receptors. Therefore, S1P can function as an extracellular rheostat regulating tonic and acutely evoked functions. Although S1P receptors can regulate lymphoid development and lymphocyte trafficking, and different opinions exist on the roles of receptor agonism and functional antagonism in regulating lymphocyte recirculation, this personal perspective highlights the pivotal control points regulated by constitutive and induced S1P receptor tone at vascular endothelial and lymphatic endothelial barriers, through which S1P agonism impacts on both innate and adaptive immunity. We also emphasize how specific, proof-of-concept chemical tools complement genetic approaches by enabling reversible perturbation of the S1P-S1P(1) receptor axis and, thus, clarifying in vivo mechanisms in the absence of developmental compensations.


Assuntos
Endotélio Vascular/metabolismo , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Animais , Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos T/fisiologia , Movimento Celular , Cloridrato de Fingolimode , Humanos , Lectinas Tipo C , Linfócitos/fisiologia , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Transdução de Sinais , Esfingosina/farmacologia , Esfingosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa