Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216062

RESUMO

The demand for agricultural crops continues to escalate with the rapid growth of the population. However, extreme climates, pests and diseases, and environmental pollution pose a huge threat to agricultural food production. Silica nanoparticles (SNPs) are beneficial for plant growth and production and can be used as nanopesticides, nanoherbicides, and nanofertilizers in agriculture. This article provides a review of the absorption and transportation of SNPs in plants, as well as their role and mechanisms in promoting plant growth and enhancing plant resistance against biotic and abiotic stresses. In general, SNPs induce plant resistance against stress factors by strengthening the physical barrier, improving plant photosynthesis, activating defensive enzyme activity, increasing anti-stress compounds, and activating the expression of defense-related genes. The effect of SNPs on plants stress is related to the physical and chemical properties (e.g., particle size and surface charge) of SNPs, soil, and stress type. Future research needs to focus on the "SNPs-plant-soil-microorganism" system by using omics and the in-depth study of the molecular mechanisms of SNPs-mediated plant resistance.


Assuntos
Aclimatação/efeitos dos fármacos , Nanopartículas/administração & dosagem , Plantas/efeitos dos fármacos , Dióxido de Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Humanos
2.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805970

RESUMO

Silicon (Si) has a multifunctional role in improving plant growth and enhancing plant disease resistance, but its mechanisms are not fully understood. In this study, we investigated the impacts of silicon application on the control of bacterial wilt and elucidated the molecular mechanisms using transcriptome sequencing. Compared to non-Si treatment, Si application (0.5-2 mM) significantly reduces tomato bacterial wilt index by 46.31-72.23%. However, Si does not influence the growth of R. solanacearum. Si application negatively influences R. solanacearum exopolysaccharide (EPS) synthesis and biofilm formation. Transcriptome analysis showed that Si treatment significantly downregulates the expression of virulence genes' transcriptional regulator (xpsR), EPS synthesis-related genes (epsD and tek), and type III effectors (HrpB2, SpaO, and EscR) in R. solanacearum. In addition, Si remarkably upregulates the expression of twitch motor-related genes (pilE2, pilE, fimT, and PilX). These findings suggest that silicon-suppressed tomato wilt incidence may be due to the regulation of the virulence-related genes of R. solanacearum by Si. Our research adds new knowledge to the application of Si in the field of disease control.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Expressão Gênica , Solanum lycopersicum/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Silício/metabolismo , Silício/farmacologia , Virulência/genética
3.
J Environ Manage ; 302(Pt A): 114039, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749083

RESUMO

Silicon (Si) has the potential to ameliorate the toxic effects of cadmium (Cd) on rice growth and mitigate Cd-uptake by rice under Cd-contaminated soil. However, it is not completely clear whether there are differences in the impacts of different Si management on the chemical behavior of Cd in soil-rice system under Cd-contaminated paddy field. Here, pot trials were conducted to explore the effects of three modes of Si application (T-applying Si at transplanting stage, J-applying Si at jointing stage, TJ-applying Si at transplanting stage and jointing stage with a ratio of 50% to 50%) on the accumulation of Cd in rice grain and the toxic risk of Cd on human health in rice consumption under Cd-polluted soil (4.21 mg·kg-1), and that without Si application was used as control (CK). Results showed that rice growth and Cd-retention in root were enhanced by Si application, and the retention of Cd in TJ root was the highest, reaching 82.36%∼84.06% of total Cd absorbed by rice plant. TJ also elevated soil pH and CEC value significantly during the whole growth period, diminished Cd availability and converted exchangeable-Cd into residual-Cd in soil. Moreover, Si application reduced Cd concentration in iron plaque, while TJ had the lowest concentration of DCB-Cd and the highest molar ratios of Fe/Cd and Mn/Cd. The bioaccessibility of Cd from grains and cooked rice were decreased by Si application. Compared with T and J, the hazard quotient of digestion from cooked white rice of TJ in gastric phase was reduced by 19.61% and 21.94%, respectively. In brief, TJ had more efficiency on reducing the Cd availability in soil during the rice growing period, promoting the retention of Cd in root, decreasing Cd uptake by rice plant and distribution to grains, as well as the bioaccessibility of Cd from cooked rice. These results also provide a novel strategy of Si application to decrease the risk of Cd migration in the soil-rice-humans system and simultaneously promote rice yields.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Humanos , Silício , Solo , Poluentes do Solo/análise
4.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754671

RESUMO

Bacterial wilt is a devastating disease of tomato caused by soilborne pathogenic bacterium Ralstonia solanacearum. Previous studies found that silicon (Si) can increase tomato resistance against R. solanacearum, but the exact molecular mechanism remains unclear. RNA sequencing (RNA-Seq) technology was used to investigate the dynamic changes of root transcriptome profiles between Si-treated (+Si) and untreated (-Si) tomato plants at 1, 3, and 7 days post-inoculation with R. solanacearum. The contents of salicylic acid (SA), ethylene (ET), and jasmonic acid (JA) and the activity of defense-related enzymes in roots of tomato in different treatments were also determined. The burst of ET production in roots was delayed, and SA and JA contents were altered in Si treatment. The transcriptional response to R. solanacearum infection of the +Si plants was quicker than that of the untreated plants. The expression levels of differentially-expressed genes involved in pathogen-associated molecular pattern-triggered immunity (PTI), oxidation resistance, and water-deficit stress tolerance were upregulated in the Si-treated plants. Multiple hormone-related genes were differentially expressed in the Si-treated plants. Si-mediated resistance involves mechanisms other than SA- and JA/ET-mediated stress responses. We propose that Si-mediated tomato resistance to R. solanacearum is associated with activated PTI-related responses and enhanced disease resistance and tolerance via several signaling pathways. Such pathways are mediated by multiple hormones (e.g., SA, JA, ET, and auxin), leading to diminished adverse effects (e.g., senescence, water-deficit, salinity and oxidative stress) normally caused by R. solanacearum infection. This finding will provide an important basis to further characterize the role of Si in enhancing plant resistance against biotic stress.


Assuntos
Perfilação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Silício/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Transcriptoma , Resistência à Doença/genética , Resistência à Doença/imunologia , Metabolismo Energético , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Estresse Oxidativo , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética
5.
Ecotoxicol Environ Saf ; 157: 216-226, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625395

RESUMO

In an effort to explore the detoxifying mechanisms of B. cereus RC-1 under heavy metal stress, the bioaccumulation by growing cells under varying range of pH, culture time and initial metal concentration were investigated from a perspective of cation release. The maximum removal efficiencies were 16.7%, 38.3%, 81.4% and 40.3% for Cu2+, Zn2+, Cd2+ and Pb2+, respectively, with initial concentrations of 10 mg/L at pH 7.0. In presence of Cu2+ or Zn2+, large quantities of cations were released into the medium in descending order of Na+>K+>Ca2+>Mg2+, while bioremoval of the two essential metals Cd2+ and Pb2+ was accompanied with cellular Na+ and Mg2+ uptake from the medium, respectively. The relative mean contributions of intracellular accumulation to the total removal were approximately 19.6% for Cu2+, 12.8% for Zn2+, 51.1% for Cd2+, and only 4.6% for Pb2+. Following exposure at high concentration, B. cereus RC-1 could keep intracellular Cd2+ concentrations constant, possibly by means of a Cd-efflux system whose activity coincided with uptake of Na+, and reduce intracellular Pb2+ concentration due to the effect of Mg2+ on limiting Pb2+ access to the cells. Cellular morphology, surface functional groups and intracellular trace elements were further investigated by SEM-EDX, TEM-EDX, FTIR and ICP-MS analysis. The phenomena that removal of Cd2+ and Pb2+ coincided with uptake of Na+ and Mg2+, respectively, inspires a novel research perspective towards the study of protective mechanism of bacterial cells against the toxicity of heavy metals.


Assuntos
Bacillus cereus/metabolismo , Metais Pesados/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Cátions , Concentração de Íons de Hidrogênio
6.
Proc Natl Acad Sci U S A ; 110(38): E3631-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003150

RESUMO

Although the function of silicon (Si) in plant physiology has long been debated, its beneficial effects on plant resistance against abiotic and biotic stresses, including insect herbivory, have been well documented. In addition, the jasmonate (JA) signaling pathway plays a crucial role in mediating antiherbivore defense responses in plants. However, potential interactions between JA and Si in response to insect attack have not been examined directly. To explore the role JA may play in Si-enhanced resistance, we silenced the expression of allene oxide synthase (OsAOS; active in JA biosynthesis) and CORONATINE INSENSITIVE1 (OsCOI1; active in JA perception) genes in transgenic rice plants via RNAi and examined resulting changes in Si accumulation and defense responses against caterpillar Cnaphalocrocis medinalis (rice leaffolder, LF) infestation. Si pretreatment increased rice resistance against LF larvae in wild-type plants but not in OsAOS and OsCOI1 RNAi lines. Upon LF attack, wild-type plants subjected to Si pretreatment exhibited enhanced defense responses relative to untreated controls, including higher levels of JA accumulation; increased levels of transcripts encoding defense marker genes; and elevated activities of peroxidase, polyphenol oxidase, and trypsin protease inhibitor. Additionally, reduced Si deposition and Si cell expansion were observed in leaves of OsAOS and OsCOI1 RNAi plants in comparison with wild-type plants, and reduced steady-state transcript levels of the Si transporters OsLsi1, OsLsi2, and OsLsi6 were observed in Si-pretreated plants after LF attack. These results suggest a strong interaction between Si and JA in defense against insect herbivores involving priming of JA-mediated defense responses by Si and the promotion of Si accumulation by JA.


Assuntos
Ciclopentanos/metabolismo , Mariposas/fisiologia , Oryza/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/fisiologia , Silício/metabolismo , Solo/análise , Animais , Catecol Oxidase/metabolismo , Inativação Gênica , Proteínas de Choque Térmico/genética , Herbivoria/fisiologia , Oxirredutases Intramoleculares/genética , Oryza/fisiologia , Peroxidase/metabolismo , Silício/análise , Inibidores da Tripsina/metabolismo
7.
Environ Sci Pollut Res Int ; 31(8): 12194-12206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227260

RESUMO

Biochar and silicon (Si) have been widely considered to play an important role in mitigating cadmium (Cd) toxicity. In this study, wild-type rice (WT, high-Si) and Si-deficient mutant rice (lsi1, low-Si) were used as raw materials to prepare biochar at 500℃; the Si concentrations of high- and low-Si biochar were 15.9% and 5.3%, respectively. The impacts of different application rates (0%, 2%, 4%) of high- and low-Si biochars on soil chemical properties, Si and Cd fractions and availability, Cd absorption, and translocation were investigated. The results showed that both types of biochars increased soil pH, soil available nitrogen, and available phosphorus and potassium; and promoted Si uptake and plant growth of rice. Soil available Si, CaCl2-Si, acetic-Si, H2O2-Si, oxalate-Si, and Na2CO3-Si were also increased by biochar supply, especially for high-Si biochar treatments. In addition, both types of biochars had no effects on soil total Cd, but reduced soil available Cd by 2-17% in early season 2022, and reduced oxidizable Cd and residual Cd. Biochar application did not influence Cd concentrations in roots, stems, and leaves, but significantly increased Cd uptake and transport from stems and leaves to grains. The results suggested that Si-rich biochar could improve soil nutrients, change soil Si/Cd fractions and availability, promote rice growth but increase the risk of Cd toxicity in grains, indicating the complex of straw biochar in remediating Cd-contaminated paddy soil.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Silício/análise , Disponibilidade Biológica , Solo/química , Peróxido de Hidrogênio/análise , Poluentes do Solo/análise , Carvão Vegetal/química , Raízes de Plantas/química
8.
Microorganisms ; 12(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543498

RESUMO

Biochar is increasingly being recognized as an effective soil amendment to enhance plant health and improve soil quality, but the complex relationships among biochar, plant resistance, and the soil microbial community are not clear. In this study, biochar derived from an invasive plant (Solidago canadensis L.) was used to investigate its impacts on bacterial wilt control, soil quality, and microbial regulation. The results reveal that the invasive plant biochar application significantly reduced the abundance of Ralstonia solanacearum in the soil (16.8-32.9%) and wilt disease index (14.0-49.2%) and promoted tomato growth. The biochar treatment increased the soil organic carbon, nutrient availability, soil chitinase, and sucrase activities under pathogen inoculation. The biochar did not influence the soil bacterial community diversity, but significantly increased the relative abundance of beneficial organisms, such as Bacillus and Sphingomonas. Biochar application increased the number of nodes, edges, and the average degree of soil microbial symbiotic network, thereby enhancing the stability and complexity of the bacterial community. These findings suggest that the invasive plant biochar produces win-win effects on plant-soil systems by suppressing soilborne wilt disease, enhancing the stability of the soil microbial community network, and promoting resource utilization, indicating its good potential in sustainable soil management.

9.
Chemosphere ; 359: 142322, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761823

RESUMO

Selecting and cultivating low-accumulating crop varieties (LACVs) is the most effective strategy for the safe utilization of di-(2-ethylhexyl) phthalate (DEHP)-contaminated soils, promoting cleaner agricultural production. However, the adsorption-absorption-translocation mechanisms of DEHP along the root-shoot axis remains a formidable challenge to be solved, especially for the research and application of LACV, which are rarely reported. Here, systematic analyses of the root surface ad/desorption, root apexes longitudinal allocation, uptake and translocation pathway of DEHP in LACV were investigated compared with those in a high-accumulating crop variety (HACV) in terms of the root-shoot axis. Results indicated that DEHP adsorption was enhanced in HACV by root properties, elemental composition and functional groups, but the desorption of DEHP was greater in LACV than HACV. The migration of DEHP across the root surface was controlled by the longitudinal partitioning process mediated by root tips, where more DEHP accumulated in the root cap and meristem of LACV due to greater cell proliferation. Furthermore, the longitudinal translocation of DEHP in LACV was reduced, as evidenced by an increased proportion of DEHP in the root apoplast. The symplastic uptake and xylem translocation of DEHP were suppressed more effectively in LACV than HACV, because DEHP translocation in LACV required more energy, binding sites and transpiration. These results revealed the multifaceted regulation of DEHP accumulation in different choysum (Brassica parachinensis L.) varieties and quantified the pivotal regulatory processes integral to LACV formation.


Assuntos
Raízes de Plantas , Poluentes do Solo , Verduras , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Verduras/metabolismo , Solo/química , Ácidos Ftálicos/metabolismo , Dietilexilftalato/metabolismo , Adsorção
10.
Plant Physiol Biochem ; 195: 206-213, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641944

RESUMO

Pennisetum glaucum is an important forage grass for livestock. However, the large accumulation of cadmium (Cd) in plant tissues increases the risk of heavy metals entering the food chain in Cd-contaminated soils. Silicon (Si) can inhibit cadmium (Cd) uptake and enhance tolerance of plant to Cd toxicity, but whether and how Si alleviates Cd toxicity in grass and the underlying mechanisms are unclear. The present study explored the differential mechanisms of silicon-induced Cd transport in apoplast and symplast, Cd distribution in root tissue and antioxidant defense system in P. glaucum under Cd stress through hydroponic and pot experiments. The present results showed that exogenous Si supply significantly reduced Cd concentrations in apoplast and symplast; Si treatment increased monosilicic acid concentration in apoplast and symplast of the roots and shoots under Cd stress. Elemental analysis of root microdomains showed that Si treatment increased the distribution of Cd and Si in the endodermis by 42.6% and 14.0%, respectively. Si alleviated the adverse influences of Cd on plant growth, which were manifested in root morphological traits and root activity. In addition, Si addition significantly increased the activities of catalase and superoxide dismutase by 37.0% and 72.7%, and improved the efficiency of the ascorbate-glutathione cycle in Cd-stress shoots. Furthermore, Si significantly reduced the contents of hydrogen peroxide and superoxide anion in Cd-stressed shoots by 16.6% and 48.7%, respectively. These findings demonstrate that Si enhances the resistance of P. glaucum to Cd stress through regulating Cd transport pathways and activating antioxidant defense systems.


Assuntos
Pennisetum , Poluentes do Solo , Antioxidantes/metabolismo , Silício/farmacologia , Silício/metabolismo , Cádmio/metabolismo , Pennisetum/metabolismo , Superóxido Dismutase/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
11.
Environ Pollut ; 327: 121521, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997144

RESUMO

Silicon (Si) is commonly applied as base-fertilizer or foliar-topdressing to palliate the uptake-translocation-accumulation of cadmium (Cd) in rice through Si-Cd antagonism. However, little is known about the fate of Cd in rice rhizosphere soil and its eco-environmental effects under different Si treatments. Here, systematic works had been carried out to elucidate the Cd species, soil properties, and environmental risks in rice rhizosphere driven by different Si soil-fertilization regimes including CK (without Si-addition), TSi (added before transplanting stage), JSi (added at jointing stage), and TJSi (split into two equal parts, added half before transplanting and another half at jointing stage). Results showed that TJSi outperformed the rest of fertilization regimes. The solid-phase-Cd concentrations treated with TSi, TJSi and JSi were increased by 4.18%, 5.73% and 3.41%, respectively, when compared to CK. The labile Cd (F1+F2) proportion of TJSi was reduced by 16.30%, 9.30% and 6.78%, respectively, when compared to CK, TSi, and JSi. Simultaneously, the liquid-phase-Cd concentration was appreciably suppressed by TJSi throughout the rice lifecycle, while TSi mainly abated Cd dissociation during the vegetative period, and JSi attenuated it during the grain-filling stage. The mobility factor of Cd treated with TJSi was the lowest, which was significantly lower than that of TSi (9.30%) and JSi (6.78%), respectively. Similarly, the oral exposure risk of TJSi was reduced by 4.43% and 32.53%; and the food-chain exposure risk of TJSi was decreased by 13.03% and 42.78%. Additionally, TJSi was the most effective in promoting enzyme activities and nutrient content in rhizosphere soil. Overall, TJSi is more positive and sustainable than TSi and JSi in reconstructing Cd-contaminated rhizosphere environments and abating the environmental risks of Cd. Agronomic practices in Cd-contaminated paddy soils can be informed by applying Si-fertilizer separately before transplanting and at jointing stage to achieve soil welfare and food security.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Silício/farmacologia , Fertilizantes/análise , Rizosfera , Poluentes do Solo/análise , Solo
12.
Ying Yong Sheng Tai Xue Bao ; 34(4): 993-1001, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078318

RESUMO

Nitrogen (N) and silicon (Si) are important nutritional elements for rice. However, excessive N fertili-zer application and the ignorance of Si fertilizer are common in practice. Straw biochar is rich in Si, which can be used as a potential Si fertilizer. In this study, we conducted a consecutive 3-year field experiment to explore the effects of N fertilizer reduction combined with straw biochar application on rice yield, Si and N nutrition. There were five treatments: conventional N application (180 kg·hm-2, N100), 20% N reduction (N80), 20% N reduction with 15 t·hm-2 biochar (N80+BC), 40% N reduction (N60), and 40% N reduction with 15 t·hm-2 biochar (N60+BC). The results showed that compared with N100, 20% N reduction did not affect the accumulation of Si and N in rice; 40% N reduction reduced foliar N absorption, but significantly increased foliar Si concentration by 14.0%-18.8%; while combined application of biochar significantly increased foliar Si accumulation, with an increase of Si concentration by 38.0%-63.3% and Si absorption by 32.3%-49.9%, but further reduced foliar N concentration. There was a significant negative correlation between Si and N concentration in mature rice leaves, but no correlation between Si and N absorption. Compared with N100, N reduction or combined application of biochar did not affect soil ammonium N and nitrate N, but increased soil pH. Nitrogen reduction combined application of biochar significantly increased soil organic matter by 28.8%-41.9% and available Si content by 21.1%-26.9%, with a significant positive correlation between them. Compared with N100, 40% N reduction reduced rice yield and grain setting rate, while 20% N reduction and combined application of biochar did not influence rice yield and yield components. In summary, appropriate N reduction and combined with straw biochar can not only reduce N fertilizer input, but also improve soil fertility and Si supply, which is a promising fertilization method in double-cropping rice fields.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Silício , Solo/química , Carvão Vegetal , Nitrogênio/análise , Agricultura
13.
Plant Physiol Biochem ; 182: 124-132, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490638

RESUMO

The safety of rice production under submergence is one of the research hotspots worldwide. Although the effects of silicon (Si) on enhancing plant stress tolerance have been widely investigated, the underlying mechanisms mediated by Si under submergence remains poorly understood. In this study, wild type (WT) and Si-defective mutant (lsi1) rice were chosen to investigate the mechanisms of Si-mediated rice resistance to submergence. Our results showed that Si addition effectively mitigated oxidative damages under submergence by reducing the content of hydrogen peroxide (H2O2) and superoxide (O2.-) in WT rice plants. Moreover, Si treatment increased rice yield by 21.5% for WT rice under submergence. The application of Si significantly inhibited the elongation and internode length in WT rice under submergence, through the synergistic regulation of endogenous hormones ethylene (ET), gibberellic acid (GA) and jasmonic acid (JA). Further investigation showed that the ethylene-responsive factor (ERF) SUB1A gene was expressed under submergence in WT and lsi1 rice, but Si addition did not influence the expression of SUB1A. Interestingly, exogenous Si down-regulated the relative expression levels of Si transporter genes Lsi1 and Lsi2 in WT rice roots by 51.7% and 48.0%, respectively. However, the physiological characteristics and genes expression of lsi1 rice were not affected by Si application regardless of submergence. The present study indicated that Si enhances the submergence tolerance and reduce the adverse effects of yield loss through the removal of reactive oxygen species and the adjustment of quiescence strategy.


Assuntos
Oryza , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Silício/metabolismo , Silício/farmacologia
14.
NanoImpact ; 28: 100418, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029971

RESUMO

Silica nanoparticles (SNPs) play an important positive role in enhancing stress resistance of plants. However, their absorption and the mechanisms of resistance in plants are not yet fully understood. In this study, we investigated the uptake of SNPs in tomato plants and explored the physiological and molecular mechanisms of SNPs-mediated bacterial wilt resistance. Folia application of SNPs significantly increased silicon content in tomato leaves and roots by 5.4-fold and 1.8-fold compared with healthy control, respectively. Moreover, foliar-applied SNPs mainly accumulated in the shoots of plants. Interestingly, we found that SNPs significantly reduced wilt severity by 20.71%-87.97%. Under pathogen infection conditions, the Hydrogen peroxide (H2O2) levels and Malondialdehyde (MDA) content in SNPs treated leaves significantly decreased by 16.33%-24.84% and 22.15%-38.54%, respectively, compared to non-treated SNPs leaves. The application of SNPs remarkably increased peroxidase (78.56-157.47%), superoxide dismutase (46.02-51.68%), and catalase (1.59-1.64 fold) enzyme activities, as well as upregulated the expression of salicylic acid-related genes (PR-1, PR-5, and PAL) in tomato leaves. Taken together, our findings demonstrate that SNPs function as important nanoparticles to maintain ROS homeostasis in plants by increasing antioxidant enzyme activity in tomato plants and enhancing plant tolerance to bacterial wilt disease by regulating the expression of salicylic acid-related genes. This study expands our understanding of how plants utilize these nanoparticles to deal with pathogen infection.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Dióxido de Silício , Espécies Reativas de Oxigênio , Solanum lycopersicum/genética , Peróxido de Hidrogênio , Ácido Salicílico
15.
Sci Total Environ ; 849: 157718, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35914593

RESUMO

The application of exogenous silicon (Si) reportedly is one of the eco-friendly practices to mitigate cadmium (Cd) phytotoxicity and regulate the chemical behaviors of Cd in the soil-rice system. But the efficiency of Si on the Cd retention by rice root varies with the Si fertilizer management. The objective of this paper was to interpret the differences in Cd immobilization by rice roots and relevant mechanisms under different ways of Si application (T-Si, supplied at transplanting stage; TJ-Si, split at transplanting and jointing stage with the ratio of 50 % to 50 %; J-Si, supplied at jointing stage and CK, none of Si application) in Cd-contaminated paddy soils. The results showed that the Cd-retention capacity of rice root was increased by 0.60 % ~ 3.06 % under different Si management when compared to CK. The concentrations of monosilicic acid in soils and in apoplast and symplast of roots were increased significantly by Si application, while Cd concentrations in apoplast and symplast of root were decreased by 28.50 % (T-Si), 40.64 % (TJ-Si) and 30.26 % (J-Si), respectively. The distribution of Cd in rice cell wall was increased significantly by TJ-Si. The Cd concentrations of inert fractions (F3, F4 and F6) in root of TJ-Si were raised obviously. Si application downregulated the expression of OsIRT2 and OsNramp5 while upregulated OsHMA3, and the expression of OsHMA3 treated by TJ-Si was obviously higher than CK and J-Si. The distributions of the passive Cd in roots bound with thiol compounds (NPT, GSH and PCs) and polysaccharide components (pectin, hemicelluloses 1 and hemicellulose 2) were raised much more by TJ-Si than by T-Si and J-Si. On the whole, compared with T-Si and J-Si, TJ-Si could more easily replenish soil available Si and enhance Cd sequestration in roots as the result of the decrease of Cd transport factor in roots. This study unravels some mechanisms about different Si management on increasing Cd retention and decreasing Cd migration in rice roots, and TJ-Si is worthy of being recommended.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Fertilizantes/análise , Oryza/química , Pectinas/metabolismo , Silício/farmacologia , Solo/química , Poluentes do Solo/análise , Compostos de Sulfidrila/metabolismo
16.
Sci Total Environ ; 839: 156202, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623534

RESUMO

The combination of biochar and specific bacteria has been widely applied to remediate Cadmium-contaminated soil. But little is known about how such composites affect the dynamic distribution of metal fractions. This process is accompanied by the alternations of soil properties and microbial community structures. Composite of rice straw biochar and Bacillus cereus RC-1 were applied to investigate its impacts on Cd alleviation and soil microbial diversity and structure. The bacterial/biochar composite treatment decreased the fraction of HOAc-extractable Cd by 38.82%, and increased residual Cd by 23.95% compared to the untreated control. Moreover, compared with the untreated control, the composite treatment significantly increased the soil pH by about 1.5 units, and the activities of catalase, urease and invertase enzymes were increased by 42.39%, 30.50% and 31.20%, respectively. Composite treatment increased soil bacterial and fungal alpha diversity, the relative abundance of Bacillus, Streptomyces, Arthrobacter, and Aspergillus species were also increased. Mantel test and correlation analysis indicated that the effects associated with fungal communities in influencing soil properties were lower than that those of bacterial communities by different treatment. Aggregated boosted tree (ABT) models analysis showed that soil chemical proprieties (as determined by SOM, CEC, AN, etc.,) contributed over 50% of the changes in bacterial and fungal communities by the composite treatment. The co-occurrence network results showed that all treatments enhanced the correlation between OUT groups and improved the possible relationships in the bacterial and fungal communities, especially the interrelationships between bacteria and fungi after the Cd fractions stabilized. These findings provide a new insight to optimal strategies for the remediation of Cd-contaminated soil.


Assuntos
Micobioma , Oryza , Poluentes do Solo , Bacillus cereus , Cádmio/análise , Carvão Vegetal/química , Oryza/química , Solo/química , Poluentes do Solo/análise
17.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1911-1918, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-36052795

RESUMO

Biochar is beneficial to soil phosphorus (P) availability and crop growth, but the effects vary greatly across different soil types. We investigated the effects of rice straw biochar (4% of total mass) and P application (0, 30, and 90 kg P·hm-2) on soil P availability, phosphomonoesterase activity, and soybean P uptake by using lateritic red soil (pH 4.91) and cinnamon soil (pH 7.24) as test materials. The results showed that biochar application at different P levels significantly increased available P and total P in both soils. Biochar application with 30 kg P·hm-2 increased soil available P with maxima at 192.6% and 237.1% in lateritic red soil and cinnamon soil, respectively. Biochar application with 30 kg P·hm-2 in lateritic red soil significantly increased the activity of alkaline phosphomonoesterase by 78.9%, decreased the content of active organic P by 39.3%, and subsequently stimulated soybean P absorption and growth. Biochar amendment significantly reduced active organic P content in cinnamon soil, but did not affect soil phosphomonoesterase activity and plant growth. The content of active organic P was significantly negatively correlated with soil available P content. In summary, the effect of biochar on soil P availability varied across different soil types (lateritic red soil > cinnamon soil) and P levels (better at 30 kg P·hm-2). Our results could provide scientific basis for a promising application of biochar in reducing the amount of P fertilizer and increasing soybean P uptake, especially in lateritic red soil.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal/química , Monoéster Fosfórico Hidrolases , Fósforo/química , Solo/química , Poluentes do Solo/análise , Glycine max
18.
J Sci Food Agric ; 91(11): 1977-83, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21480275

RESUMO

BACKGROUND: Rice varieties with similar apparent amylose content may have different grain qualities. The development of rice quality is a dynamic process that occurs with the formation of rice kernels. In this study, physicochemical properties during the grain formation period were investigated to interpret differences in grain quality between two non-waxy rice cultivars, Wuyujing3 and 30you917, with similar apparent amylose content. RESULTS: There were significant differences in dynamic changes in 1000-grain weight, amylose content and pasting and thermal properties during grain formation of the two cultivars. The difference in their apparent amylose contents from 5 days after anthesis (DAA) to 15 DAA was significant, except in the late grain-filling stage. Wuyujing3 showed a slower increase in 1000-grain weight than 30you917 from 10 to 25 DAA. The transition temperatures (T(o), T(p) and T(c)) of developing grain flour of Wuyujing3 were higher than those of 30you917 during the grain formation period. Wuyujing3 showed greater stickiness (higher breakdown and peak viscosity and lower positive setback) than 30you917 according to Rapid Visco Analyser (RVA) profiling. CONCLUSION: The results suggested that the differences in cooking and eating quality parameters of the two mature rices were determined by the differences in grain filling and the dynamic changes in the main rice quality components such as amylose content, grain weight and differential scanning calorimetry and RVA properties, which will help cultivators understand the physical basis of rice quality development.


Assuntos
Oryza/química , Oryza/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Amilose/análise , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Farinha , Manipulação de Alimentos , Géis , Controle de Qualidade , Especificidade da Espécie , Fatores de Tempo , Temperatura de Transição , Viscosidade
19.
Plants (Basel) ; 10(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919738

RESUMO

Flooding is an important natural disaster limiting rice production. Silicon (Si) has been shown to have an important role in alleviating varied environmental stress. However, very few studies have investigated the effects and mechanisms of Si in alleviating flood stress in rice. In the present study, wild type rice (cv. Oochikara, WT) and Si-defective mutant (lsi1) were chosen to examine the impacts of Si application on plant growth, photosynthesis, cell structure, and antioxidant enzyme activity of rice exposed to submergence stress at tillering stage. Our results showed that Si application improved root morphological traits, and increased Si uptake and plant biomass of WT under submergence stress, but non-significantly influenced lsi1 mutant. Under submergence stress, leaf photosynthesis of WT was significantly inhibited, and Si application had no significant effects on photosynthetic rate, transpiration rate, stomatal conductance, and intercellular carbon dioxide concentration for both of WT and lsi1 mutant, but the photochemical quenching of WT was increased and the integrity of cell structure was improved. In addition, Si application significantly reduced malondialdehyde concentration and increased the activity of peroxidase and catalase in WT leaves under submergence stress. These results suggested that Si could increase rice plant resistance against submergence stress by improving root morphological traits and chloroplast ultrastructure and enhancing antioxidant defense.

20.
Sci Total Environ ; 779: 146556, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030240

RESUMO

Biochar has the potential to enhance microbial-mediated phosphorus (P) cycling in soils, but the underlying mechanisms remain largely unknown. We hypothesized that biochar amendment could enhance the production of acid and alkaline phosphomonoesterase, phosphodiesterase and P mineralization, which may vary depending on the P input. To test this hypothesis, we assessed the impacts of rice straw biochar application (0 and 4%) under different P-input rates (0, 30 and 90 kg P ha-1) on the relationships among P fractions, phosphatase activities and alkaline phosphomonoesterase-encoding bacterial (phoD gene) communities in an acidic soil. Biochar application under low P input (< 30 kg P ha-1) significantly increased the activities of phosphodiesterase and alkaline phosphomonoesterase but not that of acid phosphomonoesterase and depleted organic P. The results from the structural equation model revealed a dominant role of alkaline phosphomonoesterase in P mineralization. The increase in alkaline phosphomonoesterase activity was not related to an increase in phoD gene abundance but was due to a shift in community composition, which was primarily driven by the soil C:P ratio. Microbial network analysis demonstrated a more complex phoD gene community with more functionally interrelated groups as a result of biochar application under low P input than under high P input. Moreover, the specific enrichment of Micromonosporaceae under C-rich and P-poor conditions may play a critical role in alkaline phosphomonoesterase production and potential P mineralization. In conclusion, we demonstrated that biochar application under low P input supports a more organized phoD gene community and preferentially enriches taxa in terms of their capacity for P mineralization, which in turn may enhance P bioavailability and plant P acquisition.


Assuntos
Fósforo , Solo , Carvão Vegetal , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa