Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Physiol Plant ; 176(2): e14286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618752

RESUMO

Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.


Assuntos
Arabidopsis , Dendrobium , Compostos Heterocíclicos com 3 Anéis , Lactonas , Dendrobium/genética , Agricultura , Plântula , Transdução de Sinais
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791550

RESUMO

Rice (Oryza sativa) is one of the most important crops for humans. The homologs of ent-kaurene synthase (KS) in rice, which are responsible for the biosynthesis of gibberellins and various phytoalexins, are identified by their distinct biochemical functions. However, the KS-Like (KSL) family's potential functions related to hormone and abiotic stress in rice remain uncertain. Here, we identified the KSL family of 19 species by domain analysis and grouped 97 KSL family proteins into three categories. Collinearity analysis of KSLs among Poaceae indicated that the KSL gene may independently evolve and OsKSL1 and OsKSL4 likely play a significant role in the evolutionary process. Tissue expression analysis showed that two-thirds of OsKSLs were expressed in various tissues, whereas OsKSL3 and OsKSL5 were specifically expressed in the root and OsKSL4 in the leaf. Based on the fact that OsKSL2 participates in the biosynthesis of gibberellins and promoter analysis, we detected the gene expression profiles of OsKSLs under hormone treatments (GA, PAC, and ABA) and abiotic stresses (darkness and submergence). The qRT-PCR results demonstrated that OsKSL1, OsKSL3, and OsKSL4 responded to all of the treatments, meaning that these three genes can be candidate genes for abiotic stress. Our results provide new insights into the function of the KSL family in rice growth and resistance to abiotic stress.


Assuntos
Alquil e Aril Transferases , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oryza , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Oryza/genética , Oryza/enzimologia , Estresse Fisiológico/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Genoma de Planta
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892138

RESUMO

Salinity stress has a great impact on crop growth and productivity and is one of the major factors responsible for crop yield losses. The K-homologous (KH) family proteins play vital roles in regulating plant development and responding to abiotic stress in plants. However, the systematic characterization of the KH family in rice is still lacking. In this study, we performed genome-wide identification and functional analysis of KH family genes and identified a total of 31 KH genes in rice. According to the homologs of KH genes in Arabidopsis thaliana, we constructed a phylogenetic tree with 61 KH genes containing 31 KH genes in Oryza sativa and 30 KH genes in Arabidopsis thaliana and separated them into three major groups. In silico tissue expression analysis showed that the OsKH genes are constitutively expressed. The qRT-PCR results revealed that eight OsKH genes responded strongly to salt stresses, and OsKH12 exhibited the strongest decrease in expression level, which was selected for further study. We generated the Oskh12-knockout mutant via the CRISPR/Cas9 genome-editing method. Further stress treatment and biochemical assays confirmed that Oskh12 mutant was more salt-sensitive than Nip and the expression of several key salt-tolerant genes in Oskh12 was significantly reduced. Taken together, our results shed light on the understanding of the KH family and provide a theoretical basis for future abiotic stress studies in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Oryza , Filogenia , Proteínas de Plantas , Estresse Salino , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Arabidopsis/genética , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612905

RESUMO

Sunflower (Helianthus annuus L.) is an important, substantial global oil crop with robust resilience to drought and salt stresses. The TGA (TGACG motif-binding factor) transcription factors, belonging to the basic region leucine zipper (bZIP) family, have been implicated in orchestrating multiple biological processes. Despite their functional significance, a comprehensive investigation of the TGA family's abiotic stress tolerance in sunflowers remains elusive. In the present study, we identified 14 TGA proteins in the sunflower genome, which were unequally distributed across 17 chromosomes. Employing phylogenetic analysis encompassing 149 TGA members among 13 distinct species, we revealed the evolutionary conservation of TGA proteins across the plant kingdom. Collinearity analysis suggested that both HaTGA01 and HaTGA03 were generated due to HaTGA08 gene duplication. Notably, qRT-PCR analysis demonstrated that HaTGA04, HaTGA05, and HaTGA14 genes were remarkably upregulated under ABA, MeJA, and salt treatments, whereas HaTGA03, HaTGA06, and HaTGA07 were significantly repressed. This study contributes valuable perspectives on the potential roles of the HaTGA gene family under various stress conditions in sunflowers, thereby enhancing our understanding of TGA gene family dynamics and function within this agriculturally significant species.


Assuntos
Asteraceae , Helianthus , Helianthus/genética , Filogenia , Estresse Salino , Evolução Biológica
5.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768207

RESUMO

The UBiA genes encode a large class of isopentenyltransferases, which are involved in the synthesis of secondary metabolites such as chlorophyll and vitamin E. They performed important functions in the whole plant's growth and development. Current studies on UBiA genes were not comprehensive enough, especially for sunflower UBiA genes. In this study, 10 HaUBiAs were identified by domain analysis these HaUBiAs had five major conserved domains and were unevenly distributed on six chromosomes. By constructing phylogenetic trees, 119 UBiA genes were found in 12 species with different evolutionary levels and divided into five major groups, which contained seven conserved motifs and eight UBiA subsuper family domains. Tissue expression analysis showed that HaUBiAs were highly expressed in the roots, leaves, and seeds. By using promoter analysis, the cis-elements of UBiA genes were mainly in hormone signaling and stress responses. The qRT-PCR results showed that HaUBiA1 and HaUBiA5 responded strongly to abiotic stresses. Under ABA and MeJA treatments, HaUBiA1 significantly upregulated, while HaUBiA5 significantly decreased. Under cold stress, the expression of UBiA1 was significantly upregulated in the roots and stems, while UBiA5 expression was increased only in the leaves. Under anaerobic induction, UBiA1 and UBiA5 were both upregulated in the roots, stems and leaves. In summary, this study systematically classified the UBiA family and identified two abiotic stress candidate genes in the sunflower. It expands the understanding of the UBiA family and provides a theoretical basis for future abiotic stress studies in sunflowers.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica
6.
J Integr Plant Biol ; 65(6): 1408-1422, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36702785

RESUMO

The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Oryza , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Endossomos/metabolismo , Folhas de Planta/metabolismo , Transporte Proteico/genética
7.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362389

RESUMO

APETALA2/Ethylene Responsive Factor (AP2/ERF) family plays important roles in reproductive development, stress responses and hormone responses in plants. However, AP2/ERF family has not been systematically studied in Dendrobium catenatum. In this study, 120 AP2/ERF family members were identified for the first time in D. catenatum, which were divided into four groups (AP2, RAV, ERF and DREB subfamily) according to phylogenetic analysis. Gene structures and conserved motif analysis showed that each DcAP2/ERF family gene contained at least one AP2 domain, and the distribution of motifs varied among subfamilies. Cis-element analysis indicated that DcAP2/ERF genes contained abundant cis-elements related to hormone signaling and stress response. To further identify potential genes involved in drought stress, 12 genes were selected to detect their expression under drought treatment through qRT-PCR analysis and DcAP2/ERF#96, a nuclear localized ethylene-responsive transcription factor, showed a strong response to PEG treatment. Overexpression of DcAP2/ERF#96 in Arabidopsis showed sensitivity to ABA. Molecular, biochemical and genetic assays indicated that DcAP2ERF#96 interacts with DREB2A and directly inhibits the expression of P5CS1 in response to the ABA signal. Taken together, our study provided a molecular basis for the intensive study of DcAP2/ERF genes and revealed the biological function of DcAP2ERF#96 involved in the ABA signal.


Assuntos
Arabidopsis , Dendrobium , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Dendrobium/genética , Dendrobium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Etilenos , Hormônios
8.
Plant Biotechnol J ; 19(2): 300-310, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32757315

RESUMO

Heading date is a key agronomic trait affecting crop yield. In rice, Early heading date 1 (Ehd1) is an important B-type response regulator in determination of heading date. Although many regulatory factors of Ehd1 expression have been functionally characterized, the direct regulators of Ehd1 largely remain to be identified. Here, we identified a new regulator of Ehd1, OsRE1, that directly binds to the A-box motif in the Ehd1 promoter. Osre1 confers an early heading phenotype due to elevated expression levels of Ehd1. OsRE1 is a nucleus-localized bZIP transcription factor with a diurnal rhythmic expression pattern. Furthermore, we identified an OsRE1-interacting protein, OsRIP1, and demonstrated that OsRIP1 can repress the transcript expression of Ehd1 in an OsRE1-dependent manner. Our genetic data showed that OsRE1 and OsRIP1 may function upstream of Ehd1 in regulating heading date. Together, our results suggest that OsRE1 functions cooperatively with OsRIP1 to regulate heading date through finely modulating the expression of Ehd1. In addition, OsRE1 and OsRIP1 are two minor heading date regulators, which are more desirable for fine-tuning heading date to improve rice regional adaptability.


Assuntos
Oryza , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Fenótipo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Biotechnol J ; 17(2): 531-539, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30107076

RESUMO

Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant-specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Flores/crescimento & desenvolvimento , Flores/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
10.
New Phytol ; 223(2): 736-750, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916395

RESUMO

Endosperm, the major storage organ in cereal grains, determines grain yield and quality. Despite the fact that a role for P-type pentatricopeptide repeat (PPR) proteins in the regulation of endosperm development has emerged, molecular functions of many P-type PPR proteins remain obscure. Here, we report a rice endosperm defective mutant, floury endosperm10 (flo10), which developed smaller starch grains in starchy endosperm and abnormal cells in the aleurone layer. Map-based cloning and rescued experiments showed that FLO10 encodes a P-type PPR protein with 26 PPR motifs, which is localized to mitochondria. Loss of function of FLO10 affected the trans-splicing of the mitochondrial nad1 intron 1, which was accompanied by the increased accumulation of the nad1 exon 1 and exons 2-5 precursors. The failed formation of mature nad1 led to a dramatically decreased assembly and activity of complex I, reduced ATP production, and changed mitochondrial morphology. In addition, loss of function of FLO10 significantly induced an alternative respiratory pathway involving alternative oxidase. These results reveal that FLO10 plays an important role in the maintenance of mitochondrial function and endosperm development through its effect on the trans-splicing of the mitochondrial nad1 intron 1 in rice.


Assuntos
Endosperma/embriologia , Íntrons/genética , Mitocôndrias/metabolismo , Oryza/embriologia , Oryza/genética , Proteínas de Plantas/genética , Trans-Splicing/genética , Respiração Celular , Complexo I de Transporte de Elétrons/metabolismo , Endosperma/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Mitocôndrias/ultraestrutura , Mutação/genética , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos , Amido/metabolismo
11.
New Phytol ; 224(1): 306-320, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31225911

RESUMO

Rice (Oryza sativa) is a facultative short-day (SD) plant, flowering early under SD and late under long-day (LD) conditions. Ghd7 is a major regulator of flowering time in rice, which strongly delays flowering under LD. Induction of Ghd7 expression by phytochromes has been shown to contribute to photoperiodic regulation of flowering in rice. Here, we show that Ghd7 also is regulated by phytochromes at a post-transcriptional level. We found that constitutive expression of Ghd7 delays flowering in the wild-type (WT) background, but not in the se5 mutant background (deficient in functional phytochromes) under LD and that Ghd7 protein fails to accumulate in the se5 mutant. We also found that co-expressing OsGIGANTEA (OsGI) with Ghd7 causes reduced accumulation of Ghd7 protein and partially suppresses the delayed flowering phenotype in the WT background, suggesting that phytochromes and OsGI play antagonist roles in regulating Ghd7 protein stability and flowering time. We show that OsPHYA, OsPHYB and OsGI could directly interact with Ghd7. Interestingly, OsPHYA and OsPHYB could inhibit the interaction between OsGI and Ghd7, thus helping to stabilize Ghd7 protein. Our results revealed a new level of Ghd7 regulation by phytochromes and OsGI in photoperiodic control of flowering in rice.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Fotoperíodo , Fitocromo/metabolismo , Proteínas de Plantas/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Modelos Biológicos , Oryza/anatomia & histologia , Oryza/efeitos da radiação , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos da radiação , Estabilidade Proteica/efeitos da radiação , Proteólise/efeitos da radiação , Protoplastos/metabolismo , Protoplastos/efeitos da radiação , Transcrição Gênica/efeitos da radiação
12.
Plant Cell Rep ; 38(10): 1273-1290, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31321495

RESUMO

KEY MESSAGE: OsVIN2, a vacuolar invertase, affects grain size and yield by altering sugar composition, transport, and starch accumulation in rice. Grain size, a major determinant of rice yield, is influenced by many developmental and environmental factors. Sugar metabolism plays vital roles in plant development. However, the way in which sugar metabolism affects rice grain size remains largely elusive. In this study, we characterized the small grain-size rice mutant sgs1. Histological analyses showed that reduced spikelet hull and endosperm size results from decreased cell size rather than cell number. Map-based cloning and complementation tests revealed that a DaiZ7 transposon insertion in a vacuolar invertase gene OsVIN2 is responsible for the mutant phenotype. Subcellular distribution and biochemical analysis indicated that OsVIN2 is located in the vacuolar lumen, and that its sucrose hydrolysis activity is maintained under acidic conditions. Furthermore, an altered sugar content with increased sucrose and decreased hexose levels, as well as changes in invertase and sucrose synthase activities, sugar transport gene expression, and starch constitution in sgs1 implies that OsVIN2 affects sucrose metabolism, including sugar composition, transport, and conversion from the source to the sink organs. Collectively, OsVIN2 is involved in sugar metabolism, and thus regulates grain size; our findings provide insights into grain development and also suggest a potential strategy to improve grain quality and yield in rice.


Assuntos
Grão Comestível/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Oryza/genética , Proteínas de Plantas/genética , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
13.
Plant Cell Rep ; 38(5): 521-532, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30790011

RESUMO

KEY MESSAGE: EH7/Ghd7 interacts with DTH8, and regulates heading date by controlling the expression of Ehd1 in rice. Heading date, or flowering time, an important agronomic trait, influences regional adaptability and yield of crops. Many genes related to heading date in rice have been identified, and a preliminary regulatory network has been established, but the relationships between proteins involved are poorly understood. We identified a flowering suppressor EH7 (Early heading 7) that represses flowering under long-day (LD) conditions. The eh7 allele caused earlier heading, shorter plant height and less grain per main panicle than did the wild type (WT), but the tiller number and 1000-grain weight were not significantly affected under natural long-day conditions. Biochemical assays showed that EH7 interacts with DTH8. Quantitative PCR showed that EH7 inhibited heading date by downregulating the expression of Ehd1, Hd3a and RFT1. We propose that EH7 interacts with DTH8 to control flowering time by regulating the expression of Ehd1, Hd3a and RFT1.


Assuntos
Flores/metabolismo , Flores/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biochem Biophys Res Commun ; 486(3): 720-725, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342864

RESUMO

LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins are plant-specific transcription factors which are involved in many biological process of plant development, including lateral organ development, photomorphogenesis, pathogen response, pollen development and plant regeneration. Here, we report new functions of LBD proteins that participate in the regulation of heading date and yield in rice. OsLBD37 and OsLBD38 are two class II type LBD proteins, function as transcriptional activators. Overexpression of OsLBD37 and OsLBD38 separately causes delayed heading date and increased yield. Both OsLBD37 and OsLBD38 are expressed in rhythmic pattern, and their proteins are localized in the nucleus. Further analysis revealed that OsLBD37 and OsLBD38 delayed heading date by down-regulating the expression of the florigen genes Hd3a and RFT1 through key regulator of heading date Ehd1. These data indicates that OsLBD37 and OsLBD38, may function as novel regulators of heading date and crop yield in rice.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oryza/classificação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transformação Genética
15.
J Exp Bot ; 68(3): 553-568, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043949

RESUMO

Heading date is an important agronomic trait related to crop yield. Many genes related to heading date have already been identified in rice (Oryza sativa), and a complicated, preliminary regulatory genetic network has also already been established, but the protein regulatory network is poorly understood. We have identified a novel heading date regulator, Heme Activator Protein like 1 (OsHAPL1), which inhibits flowering under long-day conditions. OsHAPL1 is a nuclear-localized protein that is highly expressed in leaves in a rhythmic manner. OsHAPL1 can physically interact with Days To Heading on chromosome 8 (DTH8), which physically interacts with Heading date 1 (Hd1) both in vitro and in vivo. OsHAPL1 forms a complex with DTH8 and Hd1 in Escherichia coli. OsHAPL1, DTH8, and Hd1 physically interact with the HAP complex, and also with general transcription factors in yeast (Saccharomyces cerevisiae). Further studies showed that OsHAPL1 represses the expression of the florigen genes and FLOWERING LOCUS T 1 (RFT1) and Hd3a through Early heading date 1 (Ehd1). We propose that OsHAPL1 functions as a transcriptional regulator and, together with DTH8, Hd1, the HAP complex, and general transcription factors, regulates the expression of target genes and then affects heading date by influencing the expression of Hd3a and RFT1 through Ehd1.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/genética , Proteínas de Plantas/genética , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo
16.
Transgenic Res ; 23(4): 643-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24792034

RESUMO

Rice production and seed storage are confronted with grain deterioration and loss of seed viability. Some members of the lipoxygenase (LOX) family function in degradation of storage lipids during the seed germination, but little is known about their influence on seed longevity during storage. We characterized the role of rice OsLOX2 gene in seed germination and longevity via over-expression and knock-down approaches. Abundant expression of OsLOX2 was detected in panicles, roots, and stems, but not in leaves. Moreover, OsLOX2 was highly induced during germination. OsLOX2 protein, located in the cytoplasm, showed a wide range of temperature adaptation (20-50 °C) and a substrate preference to linoleic acid. Lines over-expressing OsLOX2 showed accelerated seed germination under normal condition and lower seed viability after accelerated aging. RNA interference (RNAi) of OsLOX2 caused delayed germination and enhanced seed longevity. RNAi lines with strongly repressed OsLOX2 activity completely lost the capability of germination after accelerated aging. More lipid hydroperoxide were found in OE15 than the control, but less in RNAi lines than in the WT Nipponbare. Therefore, OsLOX2 acts in opposite directions during seed germination and longevity during storage. Appropriate repression of the OsLOX2 gene may delay the aging process during the storage without compromising germination under normal conditions.


Assuntos
Germinação/genética , Lipoxigenase/metabolismo , Longevidade/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/química , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipoxigenase/química , Lipoxigenase/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Interferente Pequeno/genética , Sementes/metabolismo , Frações Subcelulares
17.
Antioxidants (Basel) ; 13(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247518

RESUMO

Dendrobium catenatum is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in D. catenatum. A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed DcNACs were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that DcNAC87 is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in D. catenatum's response to drought stress.

18.
Front Plant Sci ; 14: 1136849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968383

RESUMO

Rice kernel quality has vital commercial value. Grain chalkiness deteriorates rice's appearance and palatability. However, the molecular mechanisms that govern grain chalkiness remain unclear and may be regulated by many factors. In this study, we identified a stable hereditary mutant, white belly grain 1 (wbg1), which has a white belly in its mature grains. The grain filling rate of wbg1 was lower than that of the wild type across the whole filling period, and the starch granules in the chalky part were oval or round and loosely arranged. Map-based cloning showed that wbg1 was an allelic mutant of FLO10, which encodes a mitochondrion-targeted P-type pentatricopeptide repeat protein. Amino acid sequence analysis found that two PPR motifs present in the C-terminal of WBG1 were lost in wbg1. This deletion reduced the splicing efficiency of nad1 intron 1 to approximately 50% in wbg1, thereby partially reducing the activity of complex I and affecting ATP production in wbg1 grains. Furthermore, haplotype analysis showed that WBG1 was associated with grain width between indica and japonica rice varieties. These results suggested that WBG1 influences rice grain chalkiness and grain width by regulating the splicing efficiency of nad1 intron 1. This deepens understanding of the molecular mechanisms governing rice grain quality and provides theoretical support for molecular breeding to improve rice quality.

19.
Int J Biol Macromol ; 233: 123369, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693612

RESUMO

Abiotic stress has great impacts on plant germination, growth and development and crop yield. Therefore, it is important to understand the molecular mechanism of plants response to abiotic stress. In this study, we identified a plant specific protein AtSIEK (stress-induced protein with EXD1-like domain and KH domain) response to salt stress. AtSIEK encodes a hnRNP K homology (KH) protein localized in nucleus. Amino acid sequences analysis found that SIEK protein is specific in plants, containing two domains with EXD1-like domain and KH domain, while SIEK homolog in animals only had EXD1-like domain without KH domain. Physiology experiments revealed that AtSIEK was significantly induced under salt stress and the siek mutant shows sensitive to salt stress, indicating that AtSIEK was a positive regulator in stress response. Further, molecular, biochemical, and genetic assays suggested that AtSIEK interacts with FRY2/CPL1, a known regulator in response to abiotic stress, and they function synergistically in response to salt stress. Taken together, these results shed new light on the regulation of plant adaption to abiotic stress, which deepen our understanding of the molecular mechanisms of abiotic stress regulation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
Mol Plant ; 14(2): 330-343, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246053

RESUMO

Heading date (or flowering time) is one of the most important agronomic traits in rice, influencing its regional adaptability and crop yield. Many major-effect genes for rice heading date have been identified, but in practice they are difficult to be used for rice molecular breeding because of their dramatic effects on heading date. Genes with minor effects on heading date, which are more desirable for fine-tuning flowering time without significant yield penalty, were seldom reported. In this study, we identified a new minor-effect heading date repressor, Delayed Heading Date 4 (DHD4). The dhd4 mutant shows a slightly earlier flowering phenotype without a notable yield penalty compared with wild-type plants under natural long-day conditions. DHD4 encodes a CONSTANS-like transcription factor localized in the nucleus. Molecular, biochemical, and genetic assays show that DHD4 can compete with 14-3-3 to interact with OsFD1, thus affecting the formation of the Hd3a-14-3-3-OsFD1 tri-protein FAC complex, resulting in reduced expression of OsMADS14 and OsMADS15, and ultimately delaying flowering. Taken together, these results shed new light on the regulation of flowering time in rice and provide a promising target for fine-tuning flowering time to improve the regional adaptability of rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/metabolismo , Sequência de Bases , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Oryza/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa