Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445959

RESUMO

Previous studies found that 5-aminolevulinic acid (ALA) and abscisic acid (ABA) can mitigate damage from adversity by enhancing photosynthesis. However, it is not clear whether they have positive effects on iron utilization and chlorophyll synthesis of tomato seedlings under low-temperature stress. To investigate the possible functional relationship between ABA and ALA and elucidate the possible mechanisms of action of ALA to alleviate low-temperature stress in tomato seedlings, this experiment analyzed the effects of ALA and ABA on chlorophyll synthesis in tomato seedling leaves sprayed with exogenous of ALA (25 mg·L-1) or ABA (100 µM) under low-temperature stress (8-18 °C/8-12 °C, day/night). The results show that exogenous ALA increased the Fv/Fm of tomato leaves by 5.31% and increased the accumulation of iron and chlorophyll by 101.15% and 15.18%, respectively, compared to the low-temperature treatment alone, and tomato resistance of low-temperature stress was enhanced. Meanwhile, exogenous application of ALA increased the ABA content by 39.43%, and subsequent application of exogenous ABA revealed that tomato seedlings showed similar effects to exogenous ALA under low-temperature stress, with increased accumulation of iron and chlorophyll in tomato seedlings, which eventually increased the maximum photochemical efficiency of PS II. Under low-temperature stress, application of exogenous ABA significantly reduced ALA content, but the expression of key enzyme genes (PPGD, HEMB1, HEME1, and HEMF1), precursors of chlorophyll synthesis by ALA, was significantly elevated, presumably because the increased activity of these enzymes after external application of ABA accelerated ALA consumption. In conclusion, ABA may crosstalk with ALA to improve the photochemical efficiency and low temperature resistance of tomatoes by regulating chlorophyll synthesis and iron accumulation.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/metabolismo , Plântula/metabolismo , Clorofila/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa