Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Rev Cardiovasc Med ; 21(4): 615-625, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33388007

RESUMO

The novel coronavirus disease (COVID-19) has spread all over the world in a short time. Information about the differences between COVID-19 patients with and without hypertension is limited. To explore the characteristics and outcomes differences between COVID-19 patients with and without hypertension, the medical records and cardiac biomarkers of 414 patients were analyzed. A total of 149 patients had a history of hypertension, while 265 patients did not have hypertension, and the groups were compared based on their clinical characteristics and laboratory findings as well as the hazard risk for composite outcomes, including intensive care unit (ICU) admission, mechanical ventilation, or death. The results are as follows. On admission, 22.1% of patients in hypertension group had elevated high sensitivity troponin I (hs-TNI > 26 pg/mL), which was higher than the proportion in the nonhypertension group (6.4%). Median NT-proBNP levels in patients with hypertension (141.9 pg/mL) were higher than those in patients without hypertension (77.3 pg/mL). Patients in the hypertension group had a higher risk for in-hospital death [HR: 2.57, 95% CI (1.46~4.51)]. However, the impact of hypertension on the prognosis was not significant after adjusting for age and sex. Multivariate Cox hazard regression confirmed that NT-proBNP levels in the highest tertile (upper 75 % of patients with hypertension) was an independent risk factor for in-hospital death in all COVID-19 patients. Taken together, hypertension per se had a modest impact on the prognosis in COVID-19 patients. In COVID-19 patients with and without hypertension, NT-proBNP may be a better predictor of prognosis than hs-TNI.


Assuntos
COVID-19/epidemiologia , Hipertensão/epidemiologia , Pandemias , SARS-CoV-2 , Idoso , Comorbidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco
2.
J Cell Mol Med ; 23(9): 6466-6478, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31293067

RESUMO

Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti-inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 µmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2-knockout (KO) and eNOS-KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.


Assuntos
Aorta/efeitos dos fármacos , Guaiacol/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aorta/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Células Cultivadas , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Guaiacol/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos
3.
Cell Cycle ; 19(24): 3534-3545, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315504

RESUMO

High-mobility group AT-hook2 (HMGA2), serving as an architectural transcription factor, participates in plenty of biological processes. Our study is aimed at illustrating the effect of HMGA2 on hypoxia-induced HUVEC injury and the underlying mechanism. To induce hypoxia-related cell injury, HUVECs were exposed to hypoxic condition for 12-24 h. Molecular expression was determined by Western blot analysis, real-time PCR and immunofluorescence staining. Cell migration was monitored by wound healing assay and Transwell chamber assay. Cell proliferation and apoptosis were measured by MTT assay kits and TUNEL staining. In this study, we discovered that HMGA2 was upregulated in hypoxia-induced HUVECs. Overexpression of HMGA2 promoted cell migration, decreased the apoptosis ratio in response to hypoxia stimulation, while HMGA2 knockdown inhibited cell migration and accelerated apoptosis in HUVECs under hypoxic condition. Mechanistically, we found that HMGA2 induced increased expression of HIF-1α,VEGF, eNOS and AKT. eNOS knockdown significantly reduced HMGA2-mediated pro-migration effects, and AKT knockdown strikingly counteracted HMGA2-mediated anti-apoptotic effect. Hence, our data indicated that HMGA2 promoted cell migration by regulating HIF-1α/VGEF/eNOS signaling and prevented cell apoptosis by activating HIF-1α/VGEF/AKT signaling in HUVECs.


Assuntos
Apoptose/genética , Hipóxia Celular , Movimento Celular/genética , Proteína HMGA2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Técnicas de Silenciamento de Genes , Proteína HMGA2/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transfecção , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Int J Biol Sci ; 16(11): 1798-1810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32398950

RESUMO

Aims: The High Mobility Group A1 (HMGA1) proteins, serving as a dynamic regulator of gene transcription and chromatin remodeling, play an influential part in the pathological process of a large number of cardiovascular diseases. However, the precise role of HMGA1 in sepsis induced cardiomyopathy (SIC) remains unintelligible. This research was designed to illustrate the effect of HMGA1 involved in SIC. Methods and Results: Cardiomyocyte-specific HMGA1 overexpression was obtained using an adeno-associated virus system with intramyocardial injection in mice heart. The model of SIC in mice was constructed via intraperitoneal injection of lipopolysaccharide (LPS) for 6h. H9c2 rat cardiomyocytes was stimulated with LPS for 12h. HMGA1 expression was upregulated in murine inflammatory hearts as well as LPS stimulated H9c2 cardiomyocytes. HMGA1-overexpressing exhibited aggravated cardiac dysfunction, cardiac inflammation as well as cells apoptosis following LPS treatment both in vivo and in vitro experiment. Interestingly, HMGA1 knockdown in H9c2 cardiomyocytes attenuated LPS-induced cardiomyocyte inflammation, but aggravated cell apoptosis. Mechanistically, we found that overexpression of HMGA1 induced increased expression of cyclooxygenase-2 (COX-2). COX-2 inhibitor alleviated the aggravation of inflammation and apoptosis in HMGA1 overexpressed H9c2 cardiomyocytes whereas HMGA1 knockdown induced a reduction in signal transducer and activators of transcription 3 (STAT3) expression. STAT3 agonist reversed HMGA1 silence induced anti-inflammatory effects, while ameliorated cell apoptosis induced by LPS. Conclusion: In conclusion, our results suggest that overexpression of HMGA1 aggravated cardiomyocytes inflammation and apoptosis by up-regulating COX-2 expression, while silence of HMGA1 expression attenuated inflammation but aggregated cell apoptosis via down-regulation of STAT3.


Assuntos
Proteína HMGA1a/metabolismo , Lipopolissacarídeos/toxicidade , Miocardite/induzido quimicamente , Miocardite/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína HMGA1a/genética , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa