Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Infect Dis ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657001

RESUMO

BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter ACTT-1 clinical trial that randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 COVID-19 patients were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95%CI 1.40-2.71) for levels >245 pg/ml vs 1.04 (95%CI 0.76-1.42) for levels < 245 pg/ml. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy.

2.
Malar J ; 22(1): 383, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115002

RESUMO

BACKGROUND: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR = 1-hazard ratio or VERR = 1-risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. METHODS: Power of VEmolFOI and VEC was compared to that of VEHR and VERR by simulations and analytic derivations, and the four VE methods were applied to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. RESULTS: In the trial of RTS,S vaccine, a significantly reduced number of clones at first infection was observed, but this was not the case in trials of PfSPZ Vaccine or primaquine, although the PfSPZ trial lacked power to show a reduction. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like those from RTS,S, but VEC is less powerful than VEHR for trials in which the number of clones at first infection is not reduced. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. CONCLUSIONS: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, these estimators are not recommended as primary endpoints for small trials unless supported by targeted data analysis. TRIAL REGISTRATIONS: NCT00866619, NCT02663700, NCT02143934.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Criança , Humanos , Lactente , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Genótipo , Malária/tratamento farmacológico , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/epidemiologia , Primaquina/uso terapêutico , Ensaios Clínicos como Assunto
3.
BMC Infect Dis ; 23(1): 345, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221466

RESUMO

BACKGROUND: The four co-circulating and immunologically interactive dengue virus serotypes (DENV1-4) pose a unique challenge to vaccine design because sub-protective immunity can increase the risk of severe dengue disease. Existing dengue vaccines have lower efficacy in DENV seronegative individuals but higher efficacy in DENV exposed individuals. There is an urgent need to identify immunological measures that are strongly associated with protection against viral replication and disease following sequential exposure to distinct serotypes. METHODS/DESIGN: This is a phase 1 trial wherein healthy adults with neutralizing antibodies to zero (seronegative), one non-DENV3 (heterotypic), or more than one (polytypic) DENV serotype will be vaccinated with the live attenuated DENV3 monovalent vaccine rDEN3Δ30/31-7164. We will examine how pre-vaccine host immunity influences the safety and immunogenicity of DENV3 vaccination in a non-endemic population. We hypothesize that the vaccine will be safe and well tolerated, and all groups will have a significant increase in the DENV1-4 neutralizing antibody geometric mean titer between days 0 and 28. Compared to the seronegative group, the polytypic group will have lower mean peak vaccine viremia, due to protection conferred by prior DENV exposure, while the heterotypic group will have higher mean peak viremia, due to mild enhancement. Secondary and exploratory endpoints include characterizing serological, innate, and adaptive cell responses; evaluating proviral or antiviral contributions of DENV-infected cells; and immunologically profiling the transcriptome, surface proteins, and B and T cell receptor sequences and affinities of single cells in both peripheral blood and draining lymph nodes sampled via serial image-guided fine needle aspiration. DISCUSSION: This trial will compare the immune responses after primary, secondary, and tertiary DENV exposure in naturally infected humans living in non-endemic areas. By evaluating dengue vaccines in a new population and modeling the induction of cross-serotypic immunity, this work may inform vaccine evaluation and broaden potential target populations. TRIAL REGISTRATION: NCT05691530 registered on January 20, 2023.


Assuntos
Vacinas contra Dengue , Dengue Grave , Adulto , Humanos , Viremia , Vacinas Atenuadas , Vacinação , Anticorpos Neutralizantes
4.
5.
J Exp Zool B Mol Dev Evol ; 330(3): 132-137, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29733500

RESUMO

Evodevo is concerned with understanding how phenotypes develop and evolve, how organismal diversity is generated and maintained, and how evolutionary innovations originate. The second Pan-American Society for Evolutionary Developmental Biology (PASEDB) meeting in Calgary, Canada, showcased a great variety of species and study systems, and a variety of approaches to address these questions. Although there were, like at the first PASEDB meeting, many developmental genetic and genomic studies, much of the work moved beyond comparative developmental genetics toward more integrative studies that seek explanations at different levels of the organismal hierarchy.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento/organização & administração , Sociedades Científicas/organização & administração , América , Animais , Distinções e Prêmios , Padronização Corporal , Modelos Biológicos
10.
Annu Rev Entomol ; 60: 141-56, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341104

RESUMO

The developmental mechanisms that control body size and the relative sizes of body parts are today best understood in insects. Size is controlled by the mechanisms that cause growth to stop when a size characteristic of the species has been achieved. This requires the mechanisms to assess size and respond by stopping the process that controls growth. Growth is controlled by two hormones, insulin and ecdysone, that act synergistically by controlling cell growth and cell division. Ecdysone has two distinct functions: At low concentration it controls growth, and at high levels it causes molting and tissue differentiation. Growth is stopped by the pulse of ecdysone that initiates the metamorphic molt. Body size is sensed by either stretch receptors or oxygen restriction, depending on the species, which stimulate the high level of ecdysone secretion that induces a molt. Wing growth occurs mostly after the body has stopped growing. Wing size is adjusted to body size by variation in both the duration and level of ecdysone secretion.


Assuntos
Insetos/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Muda
11.
J Exp Biol ; 218(Pt 18): 2927-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206351

RESUMO

Holometabolous insects undergo dramatic morphological and physiological changes during ontogeny. In particular, the larvae of many holometabolous insects are specialized to feed in soil, water or dung, inside plant structures, or inside other organisms as parasites where they may commonly experience hypoxia or anoxia. In contrast, holometabolous adults usually are winged and live with access to air. Here, we show that larval Drosophila melanogaster experience severe hypoxia in their normal laboratory environments; third instar larvae feed by tunneling into a medium without usable oxygen. Larvae move strongly in anoxia for many minutes, while adults (like most other adult insects) are quickly paralyzed. Adults survive anoxia nearly an order of magnitude longer than larvae (LT50: 8.3 versus 1 h). Plausibly, the paralysis of adults is a programmed response to reduce ATP need and enhance survival. In support of that hypothesis, larvae produce lactate at 3× greater rates than adults in anoxia. However, when immobile in anoxia, larvae and adults are similarly able to decrease their metabolic rate, to about 3% of normoxic conditions. These data suggest that Drosophila larvae and adults have been differentially selected for behavioral and metabolic responses to anoxia, with larvae exhibiting vigorous escape behavior likely enabling release from viscous anoxic media to predictably normoxic air, while the paralysis behavior of adults maximizes their chances of surviving flooding events of unpredictable duration. Developmental remodeling of behavioral and metabolic strategies to hypoxia/anoxia is a previously unrecognized major attribute of holometabolism.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Oxigênio/metabolismo , Adaptação Fisiológica , Animais , Comportamento Animal , Ácido Láctico/metabolismo , Larva/fisiologia
12.
Physiology (Bethesda) ; 28(1): 18-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23280354

RESUMO

Insect tracheal-respiratory systems achieve high fluxes and great dynamic range with low energy requirements and could be important models for bioengineers interested in developing microfluidic systems. Recent advances suggest that insect cardiorespiratory systems have functional valves that permit compartmentalization with segment-specific pressures and flows and that system anatomy allows regional flows. Convection dominates over diffusion as a transport mechanism in the major tracheae, but Reynolds numbers suggest viscous effects remain important.


Assuntos
Gafanhotos/fisiologia , Microfluídica , Modelos Animais , Animais , Engenharia Biomédica , Gafanhotos/anatomia & histologia , Respiração , Fenômenos Fisiológicos Respiratórios
13.
Proc Natl Acad Sci U S A ; 108(35): 14664-9, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21873228

RESUMO

Body size profoundly affects many aspects of animal biology, including metamorphosis, allometry, size-dependent alternative pathways of gene expression, and the social and ecological roles of individuals. However, regulation of body size is one of the fundamental unsolved problems in developmental biology. The control of body size requires a mechanism that assesses size and stops growth within a characteristic range of sizes. Under normal growth conditions in Manduca sexta, the endocrine cascade that causes the brain to initiate metamorphosis starts when the larva reaches a critical weight. Metamorphosis is initiated by a size-sensing mechanism, but the nature of this mechanism has remained elusive. Here we show that this size-sensing mechanism depends on the limited ability of a fixed tracheal system to sustain the oxygen supply to a growing individual. As body mass increases, the demand for oxygen also increases, but the fixed tracheal system does not allow a corresponding increase in oxygen supply. We show that interinstar molting has the same size-related oxygen-dependent mechanism of regulation as metamorphosis. We show that low oxygen tension induces molting at smaller body size, consistent with the hypothesis that under normal growth conditions, body size is regulated by a mechanism that senses oxygen limitation. We also found that under poor growth conditions, larvae may never attain the critical weight but eventually molt regardless. We show that under these conditions, larvae do not use the critical weight mechanism, but instead use a size-independent mechanism that is independent of the brain.


Assuntos
Tamanho Corporal , Manduca/crescimento & desenvolvimento , Metamorfose Biológica , Oxigênio/farmacologia , Animais , Larva/fisiologia , Respiração
14.
Int J Infect Dis ; 142: 106985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417612

RESUMO

OBJECTIVES: The InVITE study, starting in August 2021, was designed to examine the immunogenicity of different vaccine regimens in several countries including the Democratic Republic of Congo, Guinea, Liberia, and Mali. Prevaccination baseline samples were used to obtain estimates of previous SARS-CoV-2 infection in the study population. METHODS: Adult participants were enrolled upon receipt of their initial COVID-19 vaccine from August 2021 to June 2022. Demographic and comorbidity data were collected at the time of baseline sample collection. SARS-CoV-2 serum anti-Spike and anti-Nucleocapsid antibody levels were measured. RESULTS: Samples tested included 1016, 375, 663, and 776, from DRC, Guinea, Liberia, and Mali, respectively. Only 0.8% of participants reported a prior positive SARS-CoV-2 test, while 83% and 68% had anti-Spike and anti-Nucleocapsid antibodies, respectively. CONCLUSIONS: Overall SARS-CoV-2 seroprevalence was 86% over the accrual period, suggesting a high prevalence of SARS-CoV-2 infection. Low rates of prior positive test results may be explained by asymptomatic infections, limited access to SARS-CoV-2 test kits and health care, and inadequate surveillance. These seroprevalence rates are from a convenience sample and may not be representative of the population in general, underscoring the need for timely, well-conducted surveillance as part of global pandemic preparedness.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Guiné/epidemiologia , Libéria/epidemiologia , Mali , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , República Democrática do Congo/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais
15.
J Exp Biol ; 216(Pt 23): 4334-40, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24259256

RESUMO

Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca sexta and Drosophila melanogaster, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis is initiated when larvae attain a critical mass. We hypothesized that oxygen effects on final size might be mediated by oxygen effects on the critical weight and the ecdysone titers, which regulate growth rate and the timing of developmental transitions. Our results showed that oxygen affected critical weight, the basal ecdysone titers and the timing of the ecdysone peak, providing clear evidence that oxygen affected growth rate and developmental rate. Hypoxic third instar larvae (10% oxygen) exhibited a reduced critical weight, slower growth rate, delayed pupariation, elevated baseline ecdysone levels and a delayed ecdysone peak that occurred at a lower larval mass. Hyperoxic larvae exhibited increased basal ecdysone levels, but no change in critical weight compared with normoxic larvae and no significant change in timing of pupariation. Previous studies have shown that nutrition is crucial for regulating growth rate and the timing of developmental transitions. Here we show that oxygen level is one of multiple cues that together regulate adult size and the timing and dynamics of growth, developmental rate and ecdysone signaling.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , Oxigênio/fisiologia , Animais , Tamanho Corporal , Drosophila melanogaster/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia
16.
Res Sq ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790581

RESUMO

Background: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR=1 - hazard ratio or VERR=1 - risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. Methods: We used simulations and analytic derivations to compare power of these methods to VEHR and VERR and applied them to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. Results: The RTS,S vaccine significantly reduced the number of clones at first infection, but PfSPZ vaccine and primaquine did not. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like RTS,S, but VEC is less powerful than VEHR for vaccines which do not reduce the number of clones at first infection. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. Conclusions: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, we recommend against these estimators as primary endpoints for small trials unless supported by targeted data analysis. Trial registrations: NCT00866619, NCT02663700, NCT02143934.

17.
Sci Adv ; 9(41): eadh3150, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824621

RESUMO

Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Vacinas contra COVID-19 , Estudos Prospectivos , COVID-19/prevenção & controle , Imunidade
19.
Sci Rep ; 12(1): 4730, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304878

RESUMO

In almost all animals, physiologically low oxygen (hypoxia) during development slows growth and reduces adult body size. The developmental mechanisms that determine growth under hypoxic conditions are, however, poorly understood. Here we show that the growth and body size response to moderate hypoxia (10% O2) in Drosophila melanogaster is systemically regulated via the steroid hormone ecdysone. Hypoxia increases level of circulating ecdysone and inhibition of ecdysone synthesis ameliorates the negative effect of low oxygen on growth. We also show that the effect of ecdysone on growth under hypoxia is through suppression of the insulin/IGF-signaling pathway, via increased expression of the insulin-binding protein Imp-L2. These data indicate that growth suppression in hypoxic Drosophila larvae is accomplished by a systemic endocrine mechanism that overlaps with the mechanism that slows growth at low nutrition. This suggests the existence of growth-regulatory mechanisms that respond to general environmental perturbation rather than individual environmental factors.


Assuntos
Proteínas de Drosophila , Ecdisona , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia , Insulina/metabolismo , Larva/fisiologia , Oxigênio/metabolismo , Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa