RESUMO
The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Fator de Células-Tronco/genética , Neoplasias Testiculares/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Seleção Genética , Transcrição GênicaRESUMO
INTRODUCTION: Understanding the relationship between amyloid beta (Aß) positron emission tomography (PET) and Aß cerebrospinal fluid (CSF) biomarkers will define their potential utility in Aß treatment. Few population-based or neuropathologic comparisons have been reported. METHODS: Participants 50+ years with Aß PET and Aß CSF biomarkers (phosphorylated tau [p-tau]181/Aß42, n = 505, and Aß42/40, n = 54) were included from the Mayo Clinic Study on Aging. From these participants, an autopsy subgroup was identified (n = 47). The relationships of Aß PET and Aß CSF biomarkers were assessed cross-sectionally in all participants and longitudinally in autopsy data. RESULTS: Cross-sectionally, more participants were Aß PET+ versus Aß CSF- than Aß PET- versus Aß CSF+ with an incremental effect when using Aß PET regions selected for early Aß deposition. The sensitivity for the first detection of Thal phase ≥ 1 in longitudinal data was higher for Aß PET (89%) than p-tau181/Aß42 (64%). DISCUSSION: Aß PET can detect earlier cortical Aß deposition than Aß CSF biomarkers. Aß PET+ versus Aß CSF- findings are several-fold greater using regional Aß PET analyses and in peri-threshold-standardized uptake value ratio participants. HIGHLIGHTS: Amyloid beta (Aß) positron emission tomography (PET) has greater sensitivity for Aß deposition than Aß cerebrospinal fluid (CSF) in early Aß development. A population-based sample of participants (n = 505) with PET and CSF tests was used. Cortical regions showing early Aß on Aß PET were also used in these analyses. Neuropathology was used to validate detection of Aß by Aß PET and Aß CSF biomarkers.
RESUMO
A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism:Gls2(glutaminase 2) and Sco2 We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.
Assuntos
Genes p53/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , População Negra/genética , Carcinoma Hepatocelular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Cisplatino/farmacologia , Códon/química , Códon/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Ligação Proteica/genética , Fatores de Risco , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genéticaRESUMO
INTRODUCTION: Blood-based biomarkers of amyloid pathology and neurodegeneration are entering clinical use. It is critical to understand what factors affect the levels of these markers. METHODS: Plasma markers (Aß42, Aß40, NfL, T-tau, Aß42/40 ratio) were measured on the Quanterix Simoa HD-1 analyzer for 996 Mayo Clinic Study of Aging (MCSA) participants, aged 51 to 95 years. All other data were collected during in-person MCSA visits or abstracted from the medical record. RESULTS: Among cognitively unimpaired (CU) participants, all plasma markers correlated with age. Linear regression models revealed multiple relationships. For example, higher Charlson Comorbidity Index and chronic kidney disease were associated with higher levels of all biomarkers. Some relationships differed between mild cognitive impairment and dementia participants. DISCUSSION: Multiple variables affect plasma biomarkers of amyloid pathology and neurodegeneration among CU in the general population. Incorporating this information is critical for accurate interpretation of the biomarker levels and for the development of reference ranges.
Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Comorbidade , Humanos , Proteínas tauRESUMO
Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.
Assuntos
Cromatina/genética , Elementos de Resposta/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Animais , Sítios de Ligação , Cromatina/efeitos dos fármacos , Estruturas Cromossômicas/efeitos dos fármacos , Estruturas Cromossômicas/genética , Elementos de DNA Transponíveis , Doxorrubicina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Humanos , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Supressora de Tumor p53/metabolismoRESUMO
Cellular oxidative and electrophilic stress triggers a protective response in mammals regulated by NRF2 (nuclear factor (erythroid-derived) 2-like; NFE2L2) binding to deoxyribonucleic acid-regulatory sequences near stress-responsive genes. Studies using Nrf2-deficient mice suggest that hundreds of genes may be regulated by NRF2. To identify human NRF2-regulated genes, we conducted chromatin immunoprecipitation (ChIP)-sequencing experiments in lymphoid cells treated with the dietary isothiocyanate, sulforaphane (SFN) and carried out follow-up biological experiments on candidates. We found 242 high confidence, NRF2-bound genomic regions and 96% of these regions contained NRF2-regulatory sequence motifs. The majority of binding sites were near potential novel members of the NRF2 pathway. Validation of selected candidate genes using parallel ChIP techniques and in NRF2-silenced cell lines indicated that the expression of about two-thirds of the candidates are likely to be directly NRF2-dependent including retinoid X receptor alpha (RXRA). NRF2 regulation of RXRA has implications for response to retinoid treatments and adipogenesis. In mouse, 3T3-L1 cells' SFN treatment affected Rxra expression early in adipogenesis, and knockdown of Nrf2-delayed Rxra expression, both leading to impaired adipogenesis.
Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Receptor X Retinoide alfa/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Genoma Humano , Humanos , Isotiocianatos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator de Transcrição NF-E2/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Elementos de Resposta , Análise de Sequência de DNA , Sulfóxidos , Tiocianatos/farmacologiaRESUMO
INTRODUCTION: 2,3-dinor 11ß-Prostaglandin F2α (BPG) is an arachidonic acid derivative and the most abundant metabolic byproduct of prostaglandin D2, which is released during mast cell activation. Therefore, measurements of BPG in urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a noninvasive method for evaluation and management of mast cell disorders. Measurements obtained by LC-MS/MS exhibit a high prevalence of chromatographic interferences resulting in challenges with optimal determination of BGP. In this investigation, differential mobility spectrometry (DMS) is utilized to overcome the limitations of current testing. METHODS: Urine samples were extracted using an automated solid-phase extraction method. Samples were then analyzed with and without DMS devices installed on two commercially available mass spectrometry platforms to assess the benefits of DMS. Following promising results from a preliminary analytical evaluation, LC-DMS-MS/MS measurements of BPG in urine were fully validated to assess the analytical implications of using this technology. RESULTS AND DISCUSSION: The addition of DMS devices to the LC-MS/MS systems evaluated in this investigation significantly reduced interferences observed in the chromatograms. Concomitantly, DMS reduced the number of discordant quantifier/qualifier fragment ion results that significantly exceeded the ± 20 % limits, suggesting greater analytical specificity. The validation studies yielded low interday imprecision, with %CVs less than 6.5 % across 20 replicate measurements. Validation studies assessing other aspects of analytical performance also met acceptance criteria. CONCLUSIONS: Incorporating DMS devices greatly improved the specificity of BPG measurements by LC-MS/MS, as evidenced by the comparison of chromatograms and fragment ion results. Validation studies showed exceptional performance for established analytical metrics, indicating that this technology can be used to minimize the impact of interferences without adversely impacting other aspects of analytical or clinical performance.
Assuntos
Dinoprosta , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Análise Espectral , Espectrometria de Massa com Cromatografia LíquidaRESUMO
p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein-DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.
Assuntos
Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Proteína Supressora de Tumor p53/metabolismo , Alelos , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Biologia Computacional , Dano ao DNA , Doxorrubicina/farmacologia , Humanos , Ligação Proteica , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacosRESUMO
BACKGROUND: Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 nonsmokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays. RESULTS: Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance (p < 1.2 × 10-7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease risks, and other traits. CONCLUSIONS: We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrating genome-wide datasets, we identified their potential links to disease risks and health traits.
Assuntos
Metilação de DNA , Fumar , Adulto , Humanos , Fumar/efeitos adversos , Fumar/genética , Estudo de Associação Genômica Ampla , Epigenômica , Leucócitos , Fumar Tabaco , Ilhas de CpG , Epigênese GenéticaRESUMO
Bronchopulmonary dysplasia (BPD) is a prevalent chronic lung disease of prematurity with limited treatment options. To uncover biomarkers of BPD risk, this study investigated epigenetic and transcriptomic signatures of prematurity at birth and during the neonatal period at day 14 and 28. Peripheral blood DNAs from preterm infants were applied to methylation arrays and cell-type composition was estimated by deconvolution. Covariate-adjusted robust linear regression elucidated BPD- and prolonged oxygen (≥ 14 days) exposure-associated CpGs. RNAs from cord and peripheral blood were sequenced, and differentially expressed genes (DEGs) for BPD or oxygen exposure were determined. Estimated neutrophil-lymphocyte ratios in peripheral blood at day 14 in BPD infants were significantly higher than nonBPD infants, suggesting an heightened inflammatory response in developing BPD. BPD-DEGs in cord blood indicated lymphopoiesis inhibition, altered Th1/Th2 responses, DNA damage, and organ degeneration. On day 14, BPD-associated CpGs were highly enriched in neutrophil activation, infection, and CD4 + T cell quantity, and BPD-DEGs were involved in DNA damage, cellular senescence, T cell homeostasis, and hyper-cytokinesis. On day 28, BPD-associated CpGs along with BPD-DEGs were enriched for phagocytosis, neurological disorder, and nucleotide metabolism. Oxygen supplementation markedly downregulated mitochondrial biogenesis genes and altered CpGs annotated to developmental genes. Prematurity-altered DNA methylation could cause abnormal lymphopoiesis, cellular assembly and cell cycle progression to increase BPD risk. Similar pathways between epigenome and transcriptome networks suggest coordination of the two in dysregulating leukopoiesis, adaptive immunity, and innate immunity. The results provide molecular insights into biomarkers for early detection and prevention of BPD.
Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Displasia Broncopulmonar/etiologia , Epigenoma , Estudos Prospectivos , Perfilação da Expressão Gênica , Biomarcadores , OxigênioRESUMO
The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs). Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation -- including polymorphisms -- and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD) for p53 in nuclear extracts. Using MAPD we measured sequence-specific p53 binding of doxorubicin-activated or transiently expressed p53 to REs from established p53 target genes and p53 consensus REs. To assess the sensitivity and scalability of the assay, we tested 16 variants of the p21 target sequence and a 62-multiplex set of single nucleotide (nt) variants of the p53 consensus sequence and found many changes in p53 binding that are not captured by current computational binding models. A group of eight single nucleotide polymorphisms (SNPs) was examined and binding profiles closely matched transactivation capability tested in luciferase constructs. The in vitro binding characteristics of p53 in nuclear extracts recapitulated the cellular in vivo transactivation capabilities for eight well-established human REs measured by luciferase assay. Using a set of 26 bona fide REs, we observed distinct binding patterns characteristic of transiently expressed wild type and mutant p53s. This microsphere assay system utilizes biologically meaningful cell extracts in a multiplexed, quantitative, in vitro format that provides a powerful experimental tool for elucidating the functional impact of sequence polymorphism and protein variation on protein/DNA binding in transcriptional networks.
Assuntos
DNA/genética , DNA/metabolismo , Técnicas Genéticas , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Núcleo Celular/metabolismo , Corantes Fluorescentes , Redes Reguladoras de Genes , Genes p53 , Técnicas Genéticas/estatística & dados numéricos , Humanos , Técnicas In Vitro , Microesferas , Modelos Genéticos , Mutagênese Sítio-Dirigida , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genéticaRESUMO
The rapid development of commercially available molecular assays in response to the COVID-19 pandemic has been essential in identifying positive cases and guiding state and national response plans. With over 200 SARS-CoV-2 molecular tests having received emergency use authorization by the US Food and Drug Administration, numerous studies have been conducted to evaluate these methods and compare their analytical and clinical performance. By applying the lessons learned from the rapid development of molecular assays in response to the COVID-19 pandemic, the diagnostic industry will be better prepared to respond to future outbreaks of novel infectious diseases.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Pandemias , Estados Unidos/epidemiologiaRESUMO
BACKGROUND AND AIMS: Neurofilament light chain (NfL) is an emerging biomarker of neurodegenerative disease progression. As plasma NfL increases with age, characterization of NfL concentrations in an age-stratified cognitively unimpaired population was assessed. MATERIALS AND METHODS: EDTA-plasma samples were measured using the Simoa® NF-light™ Advantage Kit assay. One-sided reference intervals were established from 1100 cognitive normal individuals (588 male, 512 female) aged 20 to 95 years. Of those, 927 samples were obtained from the Mayo Clinic Study of Aging cohort (age > 50 years), and the remainder (age < 50 years) were obtained from individuals without known neurological conditions. All samples were from individuals without known chronic kidney disease, stroke or myocardial infarction, and a body mass index < 30 kg/m2. RESULTS: The 97.5th percentile limits for the following age ranges (in years) were (pg/mL): 20 s: ≤8.4, 30 s: ≤11.4, 40 s: ≤15.4, 50 s: ≤20.8, 60 s: ≤28.0, 70 s: ≤37.9, 80+: ≤51.2. Sex had no significant effect on reference intervals. Observed NfL concentrations increased at a rate of 3.1 % per year of age. CONCLUSIONS: Characterization of the rate of NfL concentration increase and decade-wide reference intervals from a neurologically well-characterized patient population will aid in interpretation of NfL during the clinical evaluation of a potential neurodegenerative disease.
RESUMO
BACKGROUND: Bronchopulmonary dysplasia (BPD) is a lung disease in premature infants caused by therapeutic oxygen supplemental and characterized by impaired pulmonary development which persists into later life. While advances in neonatal care have improved survival rates of premature infants, cases of BPD have been increasing with limited therapeutic options for prevention and treatment. This study was designed to explore the relationship between gestational age (GA), birth weight, and estimated blood cell-type composition in premature infants and to elucidate early epigenetic biomarkers associated with BPD. METHODS: Cord blood DNA from preterm neonates that went on to develop BPD (n = 14) or not (non-BPD, n = 93) was applied to Illumina 450 K methylation arrays. Blood cell-type compositions were estimated using DNA methylation profiles. Multivariable robust regression analysis elucidated CpGs associated with BPD risk. cDNA microarray analysis of cord blood RNA identified differentially expressed genes in neonates who later developed BPD. RESULTS: The development of BPD and the need for oxygen supplementation were strongly associated with GA (BPD, p < 1.0E-04; O2 supplementation, p < 1.0E-09) and birth weight (BPD, p < 1.0E-02; O2 supplementation, p < 1.0E-07). The estimated nucleated red blood cell (NRBC) percent was negatively associated with birth weight and GA, positively associated with hypomethylation of the tobacco smoke exposure biomarker cg05575921, and high-NRBC blood samples displayed a hypomethylation profile. Epigenome-wide association study (EWAS) identified 38 (Bonferroni) and 275 (false discovery rate 1%) differentially methylated CpGs associated with BPD. BPD-associated CpGs in cord blood were enriched for lung maturation and hematopoiesis pathways. Stochastic epigenetic mutation burden at birth was significantly elevated among those who developed BPD (adjusted p = 0.02). Transcriptome changes in cord blood cells reflected cell cycle, development, and pulmonary disorder events in BPD. CONCLUSIONS: While results must be interpreted with caution because of the small size of this study, NRBC content strongly impacted DNA methylation profiles in preterm cord blood and EWAS analysis revealed potential insights into biological pathways involved in BPD pathogenesis.
Assuntos
Displasia Broncopulmonar , Biomarcadores , Peso ao Nascer , Displasia Broncopulmonar/genética , Metilação de DNA , Epigenoma , Humanos , Lactente , Recém-Nascido , Recém-Nascido PrematuroRESUMO
Introduction: Plasma glial fibrillary acidic protein (GFAP) may be associated with amyloid burden, neurodegeneration, and stroke but its specificity for Alzheimer's disease (AD) in the general population is unclear. We examined associations of plasma GFAP with amyloid and tau positron emission tomography (PET), cortical thickness, white matter hyperintensities (WMH), and cerebral microbleeds (CMBs). Methods: The study included 200 individuals from the Mayo Clinic Study of Aging who underwent amyloid and tau PET and magnetic resonance imaging and had plasma GFAP concurrently assayed; multiple linear regression and hurdle model analyses were used to investigate associations controlling for age and sex. Results: GFAP was associated with amyloid and tau PET in multivariable models. After adjusting for amyloid, the association with tau PET was no longer significant. GFAP was associated with cortical thickness, WMH, and lobar CMBs only among those who were amyloid-positive. Discussion: This cross-sectional analysis demonstrates the utility of GFAP as a plasma biomarker for AD-related pathologies.
RESUMO
INTRODUCTION: Measurement of amyloid beta (Aß40 and Aß42) and tau (phosphorylated tau [p-tau] and total tau [t-tau]) in cerebrospinal fluid (CSF) can be utilized to differentiate clinical and preclinical Alzheimer's disease dementia (AD) from other neurodegenerative processes. METHODS: CSF biomarkers were measured in 150 participants from the Mayo Clinic Study of Aging and the Alzheimer's Disease Research Center. P-tau/Aß42 (Roche Elecsys, Fujirebio LUMIPULSE) and Aß42/40 (Fujirebio LUMIPULSE) ratios were compared to one another and to amyloid positron emission tomography (PET) classification. RESULTS: Strong correlation was observed between LUMIPULSE p-tau/Aß42 and Aß42/40, as well as Elecsys and LUMIPULSE p-tau/Aß42 and Aß42/40 (Spearman's ρ = -0.827, -0.858, and 0.960, respectively). Concordance between LUMIPULSE p-tau/Aß42 and Aß42/40 was 96% and between Elecsys p-tau/Aß42 and both LUMIPULSE ratios was 97%. All ratios had > 94% overall, positive, and negative percent agreement with amyloid PET classification. DISCUSSION: These data suggest that p-tau/Aß42 and Aß42/40 ratios provide similar clinical information in the assessment of amyloid pathology.
RESUMO
BACKGROUND: Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS: We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS: At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS: Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION: Not applicable.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Humanos , Filamentos Intermediários , Neuroimagem , Proteínas tauRESUMO
Anniston, Alabama was home to a major polychlorinated biphenyl (PCB) production facility from 1929 until 1971. The Anniston Community Health Survey I and II (ACHS-I 2005-2007, ACHS-II 2013-2014) were conducted to explore the effects of PCB exposures. In this report we examined associations between PCB exposure and DNA methylation in whole blood using EPIC arrays (ACHS-I, n = 518; ACHS-II, n = 299). For both cohorts, 35 PCBs were measured in serum. We modelled methylation versus PCB wet-weight concentrations for: the sum of 35 PCBs, mono-ortho substituted PCBs, di-ortho substituted PCBs, tri/tetra-ortho substituted PCBs, oestrogenic PCBs, and antiestrogenic PCBs. Using robust multivariable linear regression, we adjusted for age, race, sex, smoking, total lipids, and six blood cell-type percentages. We carried out a two-stage analysis; discovery in ACHS-I followed by replication in ACHS-II. In ACHS-I, we identified 28 associations (17 unique CpGs) at p ≤ 6.70E-08 and 369 associations (286 unique CpGs) at FDR p ≤ 5.00E-02. A large proportion of the genes have been observed to interact with PCBs or dioxins in model studies. Among the 28 genome-wide significant CpG/PCB associations, 14 displayed replicated directional effects in ACHS-II; however, only one in ACHS-II was statistically significant at p ≤ 1.70E-04. While we identified many novel CpGs significantly associated with PCB exposures in ACHS-I, the differential methylation was modest and the effect was attenuated seven years later in ACHS-II, suggesting a lack of persistence of the associations between PCB exposures and altered DNA methylation in blood cells.
Assuntos
Metilação de DNA , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/sangue , Exposição Ocupacional/efeitos adversos , Bifenilos Policlorados/sangue , Adulto , Alabama , Ilhas de CpG , Poluentes Ambientais/toxicidade , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Bifenilos Policlorados/toxicidadeRESUMO
The Anniston Community Health Survey (ACHS-I) was initially conducted from 2005 to 2007 to assess polychlorinated biphenyl (PCB) exposures in Anniston, Alabama residents. In 2014, a follow-up study (ACHS-II) was conducted to measure the same PCBs as in ACHS-I and additional compounds e.g., polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like non-ortho (cPCBs) substituted PCBs. In this epigenome-wide association study (EWAS), we examined the associations between PCDD, PCDF, and PCB exposures and DNA methylation. Whole blood DNA methylation was measured using Illumina EPIC arrays (n=292). We modeled lipid-adjusted toxic equivalencies (TEQs) for: ΣDioxins (sum of 28 PCDDs, PCDFs, cPCBs, and mPCBs), PCDDs, PCDFs, cPCBs, and mPCBs using robust multivariable linear regression adjusting for age, race, sex, smoking, bisulfite conversion batch, and estimated percentages of six blood cell types. Among all exposures we identified 10 genome-wide (Bonferroni p≤6.74E-08) and 116 FDR (p≤5.00E-02) significant associations representing 10 and 113 unique CpGs, respectively. Of the 10 genome-wide associations, seven (70%) occurred in the PCDDs and four (40%) of these associations had an absolute differential methylation ≥1.00%, based on the methylation difference between the highest and lowest exposure quartiles. Most of the associations (six, 60%) represented hypomethylation changes. Of the 10 unique CpGs, eight (80%) were in genes shown to be associated with dioxins and/or PCBs based on data from the 2019 Comparative Toxicogenomics Database. In this study, we have identified a set of CpGs in blood DNA that may be particularly susceptible to dioxin, furan, and dioxin-like PCB exposures.
Assuntos
Benzofuranos , Dioxinas , Bifenilos Policlorados/análise , Alabama , Metilação de DNA , Dibenzofuranos Policlorados , Seguimentos , Saúde Pública , Inquéritos e QuestionáriosRESUMO
Tobacco smoke exposure contributes to the global burden of communicable and chronic diseases. To identify immune cells affected by smoking, we use single-cell RNA sequencing on peripheral blood from smokers and nonsmokers. Transcriptomes reveal a subpopulation of FCGR3A (CD16)-expressing Natural Killer (NK)-like CD8 T lymphocytes that increase in smokers. Mass cytometry confirms elevated CD16+ CD8 T cells in smokers. Inferred as highly differentiated by pseudotime analysis, NK-like CD8 T cells express markers characteristic of effector memory re-expressing CD45RA T (TEMRA) cells. Indicative of immune aging, smokers' CD8 T cells are biased toward differentiated cells and smokers have fewer naïve cells than nonsmokers. DNA methylation-based models show that smoking dose is associated with accelerated aging and decreased telomere length, a biomarker of T cell senescence. Immune aging accompanies T cell senescence, which can ultimately lead to impaired immune function. This suggests a role for smoking-induced, senescence-associated immune dysregulation in smoking-mediated pathologies.