Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495330

RESUMO

Multiplex assays, involving the simultaneous use of multiple circulating tumor DNA (ctDNA) markers, can improve the performance of liquid biopsies so that they are highly predictive of cancer recurrence. We have developed a single-tube methylation-specific quantitative PCR assay (mqMSP) that uses 10 different methylation markers and is capable of quantitative analysis of plasma samples with as little as 0.05% tumor DNA. In a cohort of 179 plasma samples from colorectal cancer (CRC) patients, adenoma patients, and healthy controls, the sensitivity and specificity of the mqMSP assay were 84.9% and 83.3%, respectively. In a head-to-head comparative study, the mqMSP assay also performed better for detecting early-stage (stage I and II) and premalignant polyps than a published SEPT9 assay. In an independent longitudinal cohort of 182 plasma samples (preoperative, postoperative, and follow-up) from 82 CRC patients, the mqMSP assay detected ctDNA in 73 (89.0%) of the preoperative plasma samples. Postoperative detection of ctDNA (within 2 wk of surgery) identified 11 of the 20 recurrence patients and was associated with poorer recurrence-free survival (hazard ratio, 4.20; P = 0.0005). With subsequent longitudinal monitoring, 14 patients (70%) had detectable ctDNA before recurrence, with a median lead time of 8.0 mo earlier than seen with radiologic imaging. The mqMSP assay is cost-effective and easily implementable for routine clinical monitoring of CRC recurrence, which can lead to better patient management after surgery.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Neoplasias do Colo/cirurgia , Metilação de DNA/genética , Biópsia Líquida , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Antígeno Carcinoembrionário/metabolismo , DNA Tumoral Circulante/sangue , Estudos de Coortes , Neoplasias do Colo/sangue , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação/genética , Cuidados Pós-Operatórios , Reprodutibilidade dos Testes , Septinas/genética
2.
Analyst ; 147(3): 542, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34989362

RESUMO

Correction for 'High-resolution DNA size enrichment using a magnetic nano-platform and application in non-invasive prenatal testing' by Bo Zhang et al., Analyst, 2020, 145, 5733-5739, DOI: 10.1039/D0AN00813C.

3.
Proc Natl Acad Sci U S A ; 115(28): 7392-7397, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941603

RESUMO

It remains unknown whether microRNA (miRNA/miR) can target transfer RNA (tRNA) molecules. Here we provide evidence that miR-34a physically interacts with and functionally targets tRNAiMet precursors in both in vitro pulldown and Argonaute 2 (AGO2) cleavage assays. We find that miR-34a suppresses breast carcinogenesis, at least in part by lowering the levels of tRNAiMet through AGO2-mediated repression, consequently inhibiting the proliferation of breast cancer cells and inducing cell cycle arrest and apoptosis. Moreover, miR-34a expression is negatively correlated with tRNAiMet levels in cancer cell lines. Furthermore, we find that tRNAiMet knockdown also reduces cell proliferation while inducing cell cycle arrest and apoptosis. Conversely, ectopic expression of tRNAiMet promotes cell proliferation, inhibits apoptosis, and accelerates the S/G2 transition. Moreover, the enforced expression of modified tRNAiMet completely restores the phenotypic changes induced by miR-34a. Our results demonstrate that miR-34a directly targets tRNAiMet precursors via AGO2-mediated cleavage, and that tRNAiMet functions as an oncogene, potentially representing a target molecule for therapeutic intervention.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Precursores de RNA/biossíntese , Processamento Pós-Transcricional do RNA , RNA Neoplásico/biossíntese , RNA de Transferência de Metionina/biossíntese , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular , Feminino , Humanos , Células MCF-7 , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Precursores de RNA/genética , RNA Neoplásico/genética , RNA de Transferência de Metionina/genética
4.
Analyst ; 145(17): 5733-5739, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32748914

RESUMO

Precise DNA sizing can boost sequencing efficiency, reduce cost, improve data quality, and even allow sequencing of low-input samples, while current pervasive DNA sizing approaches are incapable of differentiating DNA fragments under 200 bp with high resolution (<20 bp). In non-invasive prenatal testing (NIPT), the size distribution of cell-free fetal DNA in maternal plasma (main peak at 143 bp) is significantly different from that of maternal cell-free DNA (main peak at 166 bp). The current pervasive workflow of NIPT and DNA sizing is unable to take advantage of this 20 bp difference, resulting in sample rejection, test inaccuracy, and restricted clinical utility. Here we report a simple, automatable, high-resolution DNA size enrichment workflow, named MiniEnrich, on a magnetic nano-platform to exploit this 20 bp size difference and to enrich fetal DNA fragments from maternal blood. Two types of magnetic nanoparticles were developed, with one able to filter high-molecular-weight DNA with high resolution and the other able to recover the remaining DNA fragments under the size threshold of interest with >95% yield. Using this method, the average fetal fraction was increased from 13% to 20% after the enrichment, as measured by plasma DNA sequencing. This approach provides a new tool for high-resolution DNA size enrichment under 200 bp, which may improve NIPT accuracy by rescuing rejected non-reportable clinical samples, and enable NIPT earlier in pregnancy. It also has the potential to improve non-invasive screening for fetal monogenic disorders, differentiate tumor-related DNA in liquid biopsy and find more applications in autoimmune disease diagnosis.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Pré-Natal , DNA/genética , Feminino , Humanos , Fenômenos Magnéticos , Gravidez , Análise de Sequência de DNA
5.
Int J Cancer ; 145(10): 2861-2872, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31008534

RESUMO

Urothelial cancer (UCa) is the most predominant cancer of the urinary tract and noninvasive diagnosis using hypermethylation signatures in urinary cells is promising. Here, we assess gender differences in a newly identified set of methylation biomarkers. UCa-associated hypermethylated sites were identified in urine of a male screening cohort (n = 24) applying Infinium-450K-methylation arrays and verified in two separate mixed-gender study groups (n = 617 in total) using mass spectrometry as an independent technique. Additionally, tissue samples (n = 56) of mixed-gender UCa and urological controls (UCt) were analyzed. The hypermethylation signature of UCa in urine was specific and sensitive across all stages and grades of UCa and independent on hematuria. Individual CpG sensitivities reached up to 81.3% at 95% specificity. Albeit similar methylation differences in tissue of both genders, differences were less pronounced in urine from women, most likely due to the frequent presence of squamous epithelial cells and leukocytes. Increased repression of methylation levels was observed at leukocyte counts ≥500/µl urine which was apparent in 30% of female and 7% of male UCa cases, further confirming the significance of the relative amounts of cancerous and noncancerous cells in urine. Our study shows that gender difference is a most relevant issue when evaluating the performance of urinary biomarkers in cancer diagnostics. In case of UCa, the clinical benefits of methylation signatures to male patients may outweigh those in females due to the general composition of women's urine. Accordingly, these markers offer a diagnostic option specifically in males to decrease the number of invasive cystoscopies.


Assuntos
Biomarcadores Tumorais/urina , Carcinoma de Células de Transição/diagnóstico , Metilação de DNA , Neoplasias Urológicas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/urina , Estudos de Coortes , Ilhas de CpG/genética , Epigênese Genética , Feminino , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Sensibilidade e Especificidade , Fatores Sexuais , Neoplasias Urológicas/genética , Neoplasias Urológicas/urina
6.
Nature ; 467(7311): 82-5, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20811456

RESUMO

Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Genoma Bacteriano , Indóis/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Mutação , Norfloxacino/metabolismo , Norfloxacino/farmacologia
7.
Proc Natl Acad Sci U S A ; 110(48): 19472-7, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218577

RESUMO

Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERVPRODH, that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS. We investigated the mechanisms that regulate hsERVPRODH enhancer activity. We showed that the hsERVPRODH enhancer and the internal CpG island of PRODH synergistically activate its promoter. The enhancer activity of hsERVPRODH is regulated by methylation, and in an undermethylated state it can up-regulate PRODH expression in the hippocampus. The mechanism of hsERVPRODH enhancer activity involves the binding of the transcription factor SOX2, whch is preferentially expressed in hippocampus. We propose that the interaction of hsERVPRODH and PRODH may have contributed to human CNS evolution.


Assuntos
Retrovirus Endógenos/genética , Elementos Facilitadores Genéticos/genética , Prolina Oxidase/genética , Esquizofrenia/genética , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Metilação de DNA , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Hipocampo/metabolismo , Humanos , Luciferases , Análise em Microsséries , Microscopia Confocal , Dados de Sequência Molecular , Prolina Oxidase/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Análise de Sequência de DNA
8.
Proc Natl Acad Sci U S A ; 109(15): 5850-5, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22454498

RESUMO

A key next step in synthetic biology is to combine simple circuits into higher-order systems. In this work, we expanded our synthetic riboregulation platform into a genetic switchboard that independently controls the expression of multiple genes in parallel. First, we designed and characterized riboregulator variants to complete the foundation of the genetic switchboard; then we constructed the switchboard sensor, a testing platform that reported on quorum-signaling molecules, DNA damage, iron starvation, and extracellular magnesium concentration in single cells. As a demonstration of the biotechnological potential of our synthetic device, we built a metabolism switchboard that regulated four metabolic genes, pgi, zwf, edd, and gnd, to control carbon flow through three Escherichia coli glucose-utilization pathways: the Embden-Meyerhof, Entner-Doudoroff, and pentose phosphate pathways. We provide direct evidence for switchboard-mediated shunting of metabolic flux by measuring mRNA levels of the riboregulated genes, shifts in the activities of the relevant enzymes and pathways, and targeted changes to the E. coli metabolome. The design, testing, and implementation of the genetic switchboard illustrate the successful construction of a higher-order system that can be used for a broad range of practical applications in synthetic biology and biotechnology.


Assuntos
Escherichia coli/genética , Engenharia Genética , Biologia Sintética/métodos , Sequência de Bases , Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutação/genética
9.
Nat Genet ; 38(12): 1406-12, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17086184

RESUMO

We applied whole-genome resequencing of Escherichia coli to monitor the acquisition and fixation of mutations that conveyed a selective growth advantage during adaptation to a glycerol-based growth medium. We identified 13 different de novo mutations in five different E. coli strains and monitored their fixation over a 44-d period of adaptation. We obtained proof that the observed spontaneous mutations were responsible for improved fitness by creating single, double and triple site-directed mutants that had growth rates matching those of the evolved strains. The success of this new genome-scale approach indicates that real-time evolution studies will now be practical in a wide variety of contexts.


Assuntos
Evolução Molecular Direcionada , Escherichia coli/genética , Genoma Bacteriano , Adaptação Fisiológica , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Genótipo , Glicerol/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Seleção Genética , Fatores de Tempo
10.
Nat Med ; 13(2): 218-23, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17206148

RESUMO

Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental expressed mRNA in maternal plasma. We achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma. PLAC4 mRNA in maternal plasma was fetal derived and cleared after delivery. The allelic ratios in maternal plasma correlated with those in the placenta. Fetal trisomy 21 was detected noninvasively in 90% of cases and excluded in 96.5% of controls.


Assuntos
Cromossomos Humanos Par 21/genética , Embrião de Mamíferos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Placenta/metabolismo , Diagnóstico Pré-Natal/métodos , RNA/sangue , Trissomia/genética , Povo Asiático/genética , Feminino , Frequência do Gene , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , População Branca/genética
11.
Neurocase ; 20(2): 230-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23528139

RESUMO

The visual word form area (VWFA) is a region in the posterior left occipitotemporal cortex adjacent to the fusiform gyrus hypothesized to mediate word recognition. Evidence supporting the role of this area in reading comes from neuroimaging studies of normal subjects, case-controlled lesion studies, and studies of patients with surgical resection of the VWFA for tumors or epilepsy. Based on these prior reports, a small discrete lesion to the VWFA would be expected to cause alexia in a literate person without prior brain process, but such a case has not previously been reported to our knowledge. Here, we report the case of a previously-healthy 63-year-old man with the acute onset of alexia without other significant impairments. Magnetic resonance imaging (MRI) of the brain revealed a small ischemic stroke localized to the inferior left occipitotemporal cortex, corresponding to the approximate location of the putative VWFA. Characteristic of pure alexia, testing in the weeks following the stroke revealed a letter-by-letter reading strategy and a word length effect on single word reading. Formal visual field testing was normal. There was no color anomia, or object or face recognition deficits, although a mild agraphia may have been present. This case of acute-onset alexia in a previously normal individual due to a small stroke restricted to the VWFA and sparing occipital cortex and white matter pathways supports the conclusion that the VWFA is crucial for reading.


Assuntos
Dislexia/diagnóstico , Lobo Occipital/patologia , Leitura , Acidente Vascular Cerebral/complicações , Lobo Temporal/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Dislexia/etiologia , Dislexia/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/patologia
12.
J Infect Dis ; 207(6): 999-1006, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23300164

RESUMO

The molecular detection of transmission of rapidly mutating pathogens such as hepatitis C virus (HCV) is commonly achieved by assessing the genetic relatedness of strains among infected patients. We describe the development of a novel mass spectrometry (MS)-based approach to identify HCV transmission. MS was used to detect products of base-specific cleavage of RNA molecules obtained from HCV polymerase chain reaction fragments. The MS-peak profiles were found to reflect variation in the HCV genomic sequence and the intrahost composition of the HCV population. Serum specimens originating from 60 case patients from 14 epidemiologically confirmed outbreaks and 25 unrelated controls were tested. Neighbor-joining trees constructed using MS-peak profile-based Hamming distances showed 100% accuracy, and linkage networks constructed using a threshold established from the Hamming distances between epidemiologically unrelated cases showed 100% sensitivity and 99.93% specificity in transmission detection. This MS-based approach is rapid, robust, reproducible, cost-effective, and applicable to investigating transmissions of other pathogens.


Assuntos
DNA Viral/isolamento & purificação , Hepacivirus/isolamento & purificação , Hepatite C/epidemiologia , Hepatite C/transmissão , Espectrometria de Massas/métodos , Análise de Variância , DNA Viral/sangue , Hepacivirus/genética , Hepatite C/sangue , Humanos , Epidemiologia Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Viral/sangue , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
13.
Mov Disord ; 28(8): 1146-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23519694

RESUMO

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is present in around 40% of Parkinson's disease (PD) patients. Definitive diagnosis requires a polysomnogram, but that is costly, time intensive, and not practical for large-scale studies. Therefore, we assessed using a questionnaire-based diagnostic approach. METHODS: The patient-administered RBD questionnaire and bed-partner-administered question 1 of the Mayo questionnaire were prospectively validated. RESULTS: Seventy-five PD patients (51 male, 68 Hoehn and Yahr stages I and II) participated. Forty-eight had a clinical history of RBD. Sensitivity was 100% (95% CI, 86.3%-100%) when a combination of both questionnaires was compared with the gold standard of polysomnogram-confirmed RBD. Among those who achieved REM sleep (n=65), specificity was highest for the patient questionnaire used alone, at 82.4% (95% CI, 64.8%-92.6%). CONCLUSIONS: A combination of patient and bed-partner questionnaires is a useful tool to detect RBD.


Assuntos
Doença de Parkinson/complicações , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/etiologia , Inquéritos e Questionários , Feminino , Humanos , Masculino , Curva ROC , Autorrelato
14.
Proc Natl Acad Sci U S A ; 107(36): 15898-903, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20713708

RESUMO

The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator system that affords for modular, tunable, and tight control of gene expression in vivo. Here we highlight several experimental advantages unique to this RNA-based system, including physiologically relevant protein production, component modularity, leakage minimization, rapid response time, tunable gene expression, and independent regulation of multiple genes. We demonstrate this utility in four sets of in vivo experiments with various microbial systems. Specifically, we show that the synthetic riboregulator is well suited for GFP fusion protein tracking in wild-type cells, tight regulation of toxic protein expression, and sensitive perturbation of stress response networks. We also show that the system can be used for logic-based computing of multiple, orthogonal inputs, resulting in the development of a programmable kill switch for bacteria. This work establishes a broad, easy-to-use synthetic biology platform for microbiology experiments and biotechnology applications.


Assuntos
Ribonucleotídeos/fisiologia , Fenômenos Fisiológicos Bacterianos
15.
Proc Natl Acad Sci U S A ; 107(49): 21152-7, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078998

RESUMO

We report that the stress axis-regulated exon (STREX)-containing calcium-activated big potassium (BKCa) channel splice variant expression and physiology are regulated in part by cytoplasmic splicing and intron retention. NextGen sequencing of the mRNA complement of pooled hippocampal dendrite samples found intron 17a (i17a), the intron immediately preceding STREX, in the BKCa mRNA. Further molecular analyses of i17a revealed that the majority of i17a-containing BKCa channel mRNAs associate with STREX. i17a siRNA treatment followed by STREX protein immunocytochemistry demonstrated both reduced levels and altered subcellular distribution of STREX-containing BKCa channel protein. Selective reduction of i17a-BKCa or STREX-BKCa mRNAs induced similar changes in the burst firing properties of hippocampal neurons. Collectively, these data show that STREX splice variant regulation via cytoplasmic splicing and intron retention helps generate STREX-dependent BKCa current diversity in hippocampal neurons.


Assuntos
Processamento Alternativo/genética , Íntrons/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Animais , Dendritos , Hipocampo/citologia , Neurônios , RNA Mensageiro , Ratos
16.
Trends Genet ; 25(7): 324-31, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19540612

RESUMO

Non-invasive prenatal diagnosis of fetal chromosomal aneuploidies and monogenic diseases by analysing fetal DNA present in maternal plasma poses a challenging goal. In particular, the presence of background maternal DNA interferes with the analysis of fetal DNA. Using single molecule counting methods, including digital PCR and massively parallel sequencing, many of the former problems have been solved. Digital mutation dosage assessment can detect the number of mutant alleles a fetus has inherited from its parents for fetal monogenic disease diagnosis, and massively parallel plasma DNA sequencing enables the direct detection of fetal chromosomal aneuploidies from maternal plasma. The analytical power of these methods, namely sensitivity, specificity, accuracy and precision, should catalyse the eventual clinical use of non-invasive prenatal diagnosis.


Assuntos
Doenças Fetais/diagnóstico , Mutação , Diagnóstico Pré-Natal/métodos , Aneuploidia , DNA/sangue , DNA/genética , Feminino , Doenças Fetais/sangue , Doenças Fetais/genética , Humanos , Masculino , Gravidez
17.
Nature ; 439(7078): 856-60, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16482159

RESUMO

The ability to construct synthetic gene networks enables experimental investigations of deliberately simplified systems that can be compared to qualitative and quantitative models. If simple, well-characterized modules can be coupled together into more complex networks with behaviour that can be predicted from that of the individual components, we may begin to build an understanding of cellular regulatory processes from the 'bottom up'. Here we have engineered a promoter to allow simultaneous repression and activation of gene expression in Escherichia coli. We studied its behaviour in synthetic gene networks under increasingly complex conditions: unregulated, repressed, activated, and simultaneously repressed and activated. We develop a stochastic model that quantitatively captures the means and distributions of the expression from the engineered promoter of this modular system, and show that the model can be extended and used to accurately predict the in vivo behaviour of the network when it is expanded to include positive feedback. The model also reveals the counterintuitive prediction that noise in protein expression levels can increase upon arrest of cell growth and division, which we confirm experimentally. This work shows that the properties of regulatory subsystems can be used to predict the behaviour of larger, more complex regulatory networks, and that this bottom-up approach can provide insights into gene regulation.


Assuntos
Regulação da Expressão Gênica , Modelos Genéticos , Arabinose/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Isopropiltiogalactosídeo/farmacologia , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Processos Estocásticos , Transativadores/genética , Transativadores/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(4): 1145-50, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19164565

RESUMO

In this study, a reverse-engineering strategy was used to infer and analyze the structure and function of an aging and glucose repressed gene regulatory network in the budding yeast Saccharomyces cerevisiae. The method uses transcriptional perturbations to model the functional interactions between genes as a system of first-order ordinary differential equations. The resulting network model correctly identified the known interactions of key regulators in a 10-gene network from the Snf1 signaling pathway, which is required for expression of glucose-repressed genes upon calorie restriction. The majority of interactions predicted by the network model were confirmed using promoter-reporter gene fusions in gene-deletion mutants and chromatin immunoprecipitation experiments, revealing a more complex network architecture than previously appreciated. The reverse-engineered network model also predicted an unexpected role for transcriptional regulation of the SNF1 gene by hexose kinase enzyme/transcriptional repressor Hxk2, Mediator subunit Med8, and transcriptional repressor Mig1. These interactions were validated experimentally and used to design new experiments demonstrating Snf1 and its transcriptional regulators Hxk2 and Mig1 as modulators of chronological lifespan. This work demonstrates the value of using network inference methods to identify and characterize the regulators of complex phenotypes, such as aging.


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Regressão , Reprodutibilidade dos Testes , Fatores de Tempo , Transcrição Gênica
19.
Proc Natl Acad Sci U S A ; 106(40): 17095-100, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805156

RESUMO

Length variation in short tandem repeats (STRs) is an important family of DNA polymorphisms with numerous applications in genetics, medicine, forensics, and evolutionary analysis. Several major diseases have been associated with length variation of trinucleotide (triplet) repeats including Huntington's disease, hereditary ataxias and spinobulbar muscular atrophy. Using the reference human genome, we have catalogued all triplet repeats in genic regions. This data revealed a bias in noncoding DNA repeat lengths. It also enabled a survey of repeat-length polymorphisms (RLPs) in human genomes and a comparison of the rate of polymorphism in humans versus divergence from chimpanzee. For short repeats, this analysis of three human genomes reveals a relatively low RLP rate in exons and, somewhat surprisingly, in introns. All short RLPs observed in multiple genomes are biallelic (at least in this small sample). In contrast, long repeats are highly polymorphic and some long RLPs are multiallelic. For long repeats, the chimpanzee sequence frequently differs from all observed human alleles. This suggests a high expansion/contraction rate in all long repeats. Expansions and contractions are not, however, affected by natural selection discernable from our comparison of human-chimpanzee divergence with human RLPs. Our catalog of human triplet repeats and their surrounding flanking regions can be used to produce a cost-effective whole-genome assay to test individuals. This repeat assay could someday complement SNP arrays for producing tests that assess the risk of an individual to develop a disease, or become part of personalized genomic strategy that provides therapeutic guidance with respect to drug response.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Genoma Humano/genética , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/genética , Animais , Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Frequência do Gene , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Repetições de Microssatélites/genética , Pan troglodytes/genética , Polimorfismo Genético
20.
Proc Natl Acad Sci U S A ; 106(38): 16399-404, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805311

RESUMO

Bacteria have a complex internal organization with specific localization of many proteins and DNA, which dynamically move during the cell cycle and in response to changing environmental stimuli. Much less is known, however, about the localization and movements of RNA molecules. By modifying our previous RNA labeling system, we monitor the expression and localization of a model RNA transcript in live Escherichia coli cells. Our results reveal that the target RNA is not evenly distributed within the cell and localizes laterally along the long cell axis, in a pattern suggesting the existence of ordered helical RNA structures reminiscent of known bacterial cytoskeletal cellular elements.


Assuntos
Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , RNA Bacteriano/metabolismo , Transcrição Gênica , Escherichia coli/citologia , Escherichia coli/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Cinética , Microscopia de Fluorescência , RNA Bacteriano/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa