Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(8): 1913-1927, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678399

RESUMO

This study compared two different methods, the satellite altimetry-based and DEM (digital elevation model)-based, for estimating lake water volume changes. We focused on 34 lakes in China as the testing sites to compare the two methods for lake water volume changes from 2005 to 2020. The satellite altimetry-based method used water levels provided by the DAHITI (Database for Hydrological Time Series of Inland Waters) data and surface areas derived from Landsat imagery. The DEM-based method used the SRTM DEM data in combination with Landsat-derived lake extents. Our results showed a high degree of consistency in lake water volume changes estimated between the two methods (R2 > 0.90), but each method has its limitations. In terms of temporal coverage, the satellite altimetry-based method with the DAHITI data is limited by missing water level data in certain periods. The performance of the DEM-based method in extracting lake shore boundaries in regions with flat terrains (slope <1.5°) is not satisfactory. The DEM-based method has complete regional applicability (100%) in the Tibetan Plateau (TP) Lake Region, yet its effectiveness drops significantly in the Xinjiang and Eastern China Plain Lake Regions, with applicability rates of 50 and 40%, respectively.


Assuntos
Lagos , China , Monitoramento Ambiental/métodos , Imagens de Satélites
2.
Anal Chem ; 88(17): 8772-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27514649

RESUMO

High yield fission products, (135)Cs and (137)Cs, have entered the environment as a result of anthropogenic nuclear activities. Analytical methods for ultratrace measurement of (135)Cs and (137)Cs are required for environmental geochemical and nuclear forensics studies. Here we report a highly sensitive method combining a desolvation sample introduction system (APEX-Q) with triple-quadrupole inductively coupled plasma mass spectrometry (AEPX-ICPMS/MS) for the determination of (135)Cs and (135)Cs/(137)Cs isotope ratio at femtogram levels. Using this system, we introduced only selected ions into the collision/reaction cell to react with N2O, significantly reducing the isobaric interferences ((135)Ba(+) and (137)Ba(+)) and polyatomic interferences ((95,97)Mo(40)Ar(+), (119)Sn(16)O(+), and (121)Sb(16)O(+)). Compared to the instrument setup of ICPMS/MS, the APEX-ICPMS/MS enables a 10-fold sensitivity increase. In addition, an effective chemical separation scheme consisting of ammonium molybdophosphate (AMP) Cs-selective adsorption and two-stage ion-exchange chromatographic separation was developed to remove major matrix and interfering elements from environmental samples (10-40 g). This separation method showed high decontamination factors (10(4)-10(7)) for major matrix elements (Al, Ca, K, Mg, Na, and Si) and interfering elements (Ba, Mo, Sb, and Sn). The high sensitivity of APEX-ICPMS/MS and the effective removal sample matrix allowed reliable analysis of (135)Cs and (137)Cs with extremely low detection limits (0.002 pg mL(-1), corresponding to 0.006 Bq mL(-1) (137)Cs). The accuracy and applicability of the APEX-ICPMS/MS method was validated by analysis of seven standard reference materials (soils, sediment, and plants). For the first time, ultratrace determination of (135)Cs and (135)Cs/(137)Cs isotope ratio at global fallout source environmental samples was achieved with the ICPMS technique.

3.
Anal Chem ; 88(14): 7387-94, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27322003

RESUMO

A new method using sector field-inductively coupled plasma mass spectrometry (SF-ICPMS) was developed for the determination of (241)Am in large soil samples to provide realistic soil-plant transfer parameter data for dose assessment of nuclear waste disposal plans. We investigated four subjects: extraction behaviors of interfering elements (Bi, Tl, Hg, Pb, Hf, and Pt) on DGA resin (normal type, abbreviated as DGA-N); soil matrix element removal (Mg, Fe, Al, K, Na) using Fe(OH)3, CaF2, and CaC2O4 coprecipitations; Am and rare earth elements (REEs) separation on DGA-N and TEVA resins; and optimization of SF-ICPMS (equipped with a high efficiency nebulizer (HEN)) for Am determination. Our method utilized concentrated HNO3 to leach Am from 2 to 20 g soil samples. The CaC2O4 coprecipitation was used to remove major metals in soil and followed by Am/interfering elements separation using the proposed UTEVA + DGA-N procedure. After a further separation of REEs on TEVA resin, (241)Am was determined by HEN-SF-ICPMS. This method eliminated the matrix effect in ICPMS (241)Am measurement for large soil samples. The high decontamination factors (DFs) of interfering elements enable their thorough removal, and in particular, the DF of Pu (7 × 10(5)) was the highest ever reported in (241)Am studies; thus, this method is capable of analyzing (241)Pu-contaminated Fukushima Daiichi Nuclear Power Plant (FDNPP) sourced soil samples. A low detection limit of 0.012 mBq g(-1) for (241)Am was achieved. The chemical recovery of Am (76-82%) was stable for soil samples. This method can be employed for the low level (241)Am determination in large size soil samples that are contaminated with (241)Pu.

4.
Anal Chem ; 87(11): 5511-5, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25938267

RESUMO

An acidic leaching method using HNO3 is widely employed to release the global fallout Pu from soil samples for further chemical separations in radioecology and toxicology studies and in many applications using Pu as a useful tracer. In the method's sample ash treatment step to decompose organic matter in soil, various ashing temperatures (400-900 °C) are used; however, the effect of ashing temperature on the accurate Pu analysis has not been well investigated. In this study, two standard reference soils (IAEA-soil-6 and IAEA-375) were used to determine the ashing temperature effect (from 375 to 600 °C) on the HNO3 leaching method. The Pu analytical results of both standard reference materials showed that lower (239+240)Pu activity was observed when the ashing temperature exceeded 450 °C, and the (239+240)Pu activity continued to decrease as the ashing temperature was raised. Approximately 40% of the Pu content could not be leached out by concentrated HNO3 after ashing for 4 h at 600 °C. The Pu loss was attributed to the formation of refractory materials, which are insoluble in HNO3 solution. This hypothesis was confirmed by the XRD analysis of soil samples, which revealed that plagioclase-like silicate materials were formed after high-temperature ashing. To ensure Pu release efficiency in HNO3 leaching, we recommend 450 °C as the ideal ashing temperature. This recommendation is also useful for analysis of other important artificial radionuclides (e.g., (137)Cs, (90)Sr, (241)Am) for which an ashing process is needed to decompose the organic content in soil samples.

5.
Talanta ; 262: 124710, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244244

RESUMO

Methods for Pu determination in water samples has been longtime studied but they generally involved tedious manual operations. In this context, we proposed a novel strategy for accurate determination of ultra-trace Pu in water samples by the combination of fully automated separation with direct ICP-MS/MS measurement. A recently commercialized extraction resin TK200 was used for single-column separation due to its distinctive nature. Acidified waters up to 1 L were directly loaded to the resin at high flow rate (15 mL min-1) with omitting the frequently used co-precipitation process. Small volumes of dilute HNO3 were used for column washing, and Pu was efficiently eluted within only 2 mL 0.5 mol L-1 HCl-0.1 mol L-1 HF with a stable recovery (65%). This separation procedure was fully automated under the control of user program, meanwhile the final eluent was compatible for direct ICP-MS/MS measurement without extra sample treatment. In that way, both the labor intensity and reagent consumption were minimized compared with existing methods. With the high decontamination (104 to 105) of U in the chemical separation and the further elimination of uranium hydrides under oxygen reaction model during ICP-MS/MS measurement, the overall interference yields of UH+/U+ and UH2+/U+ were down to 10-15. The limits of detection (LODs) of this method reached 0.32 µBq L-1 for 239Pu and 2.00 µBq L-1 for 240Pu, which were much lower than those stipulated in the general guidelines for drinking water standards, suggesting this method was promising in routine or emergency radiation monitoring. Furthermore, the established method was successfully applied in a pilot study to determine global fallout derived Pu in surface glacier samples with extremely low concentrations of 239+240Pu, which suggested the method would also be feasible in glacial chronology studies in the future.

6.
Sci Total Environ ; 887: 164140, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37178844

RESUMO

Plutonium isotopes have drawn public attention because of their high radiotoxicity and risk for internal radiation. Cryoconite, dark sediments on the surface of glaciers, is rich in anthropogenic radionuclides. Therefore, glaciers are regarded as not only a temporary sink for radioactive pollutants in the past decades, but also a secondary source during their melting. However, study on activity concentration and source of Pu isotopes in cryoconite materials in Chinese glaciers have not been studies thus far. The present study determined the 239+240Pu activity concentration and 240Pu/239Pu atom ratio in cryoconite and other environmental samples collected in August-one ice cap, northeast Tibetan Plateau. The results showed that the 239+240Pu activity concentration in cryoconite is 2-3 orders of magnitude higher than the background value, suggesting the exceptional capacity of cryoconite to accumulate Pu isotopes. The high 239+240Pu level in cryoconite in the study area was significantly correlated with organic matter and slope, indicating their dominant influence. The average values of the 240Pu/239Pu atom ratio for proglacial sediments (0.175) and grassland soils (0.180) suggested that the global fallout is the dominant source of Pu isotopes pollution. In contrast, the measured 240Pu/239Pu atom ratios in the cryoconite were distinctly lower at 0.064-0.199, with an average of 0.157, indicating that the close-in fallout Pu isotopes from Chinese nuclear test sites is another source. In addition, although the relatively lower activity concentrations of 239+240Pu in proglacial sediments implies that most Pu isotopes are retained in this glacier instead of being redistributed along with cryoconite by meltwater, the potential health and ecotoxicological risks to the proglacial environment and downstream areas cannot be ignored. These results are important for understanding the fate of Pu isotopes in the cryosphere and can be applied as baseline data for radioactivity evaluation in the future.

7.
Environ Sci Pollut Res Int ; 27(1): 1118-1130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820246

RESUMO

Coastal wetlands are crucial to global climate change due to their roles in modulating atmospheric concentrations of greenhouse gases (GHGs) (CO2, CH4, N2O). Under a warming climate, we investigated spatial and temporal variations of GHGs emissions over the coastal wetlands in southeastern China during 2012-2014. Five dominant land cover types in coastal wetlands have been considered, including the bare mud flat (BF), the Spartina alterniflora flats (SAF), the Suaeda glauca flats (SGF), the Phragmites australis flat (PAF), and the Scripus triqueter flat (STF). The results showed that the annual average CO2 fluxes were 305.8, 588.8, 370.2, and 136.5 mg m-2 h-1 from spring to winter. CH4 fluxes presented to be a sink in spring (- 0.02 mg m-2 h-1), and functioned as a source in the following seasons. Correlation analysis indicated that the surface air temperature and the cumulative precipitation could be two main factors that influenced the seasonal and inter-annual variations of GHGs emissions. In addition, we provided a regional budget of GHGs emissions that suggested the variations of GHGs emissions under a warming climate.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , China , Gases de Efeito Estufa , Óxido Nitroso/química , Poaceae , Estações do Ano , Temperatura , Áreas Alagadas
8.
Sci Total Environ ; 746: 141416, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771766

RESUMO

Patchiness of grassland results in important effects on ecohydrological processes in arid and semiarid areas; however, the influences on subsurface water flow and soil water distribution remain poorly understood, particularly during vegetation succession on slopes. This study examined these effects by comparing the water flow behaviors and preferential infiltration between vegetation patches (VP) and interspace patches (IP) in three sites at different states of vegetation succession (grass, subshrub and shrub) in abandoned farmland of the Loess Plateau, China. Dye tracer infiltration showed that patchiness of vegetation increased spatial variations of soil water and preferential infiltration by increasing the densities of fine root length and fine root volume in the soil profile. Moreover, the more abundant and intricate roots following a lateral direction beneath VP likely contributed to lateral flow and infiltration variability. However, differences between VP and IP were not significant because considerable living fine roots and decayed roots of IP also provided preferential flow pathways. Our finding indicated that IP could compete with VP for access to soil water resources, which potentially increased hillslope-scale infiltration and reduced surface runoff and erosion risk. Under the different states of vegetation succession, subshrub patches showed significantly greater preferential infiltration volume (28.53 mm) and contribution of preferential infiltration to total infiltration (60.58%) than grass and shrub patches. Vegetation patch size made positive effects on improving preferential flow and water movement. Greater preferential flow in subshrub patches played a positive role in soil water storage and replenishment. Therefore, natural restoration of a slope area with small heterogeneity in preferential flow can be successfully applied in the Loess Plateau, particularly during the subshrub succession state.

9.
Talanta ; 151: 30-41, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26946007

RESUMO

Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research.


Assuntos
Espectrometria de Massas/métodos , Plutônio/análise , Água do Mar/química , Poluentes Radioativos da Água/análise , Sedimentos Geológicos/química , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Reprodutibilidade dos Testes
10.
Talanta ; 159: 55-63, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474279

RESUMO

Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended particles caused by the accident could be neglected as the (240)Pu/(239)Pu atom ratios (0.182-0.208) were within the range of global fallout.

11.
Sci Total Environ ; 511: 176-85, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25544336

RESUMO

Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of 137Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and 137Cs. 240Pu/239Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of 137Cs at both uncultivated and cultivated sites. 239+240Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688 Bq m(-2) respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs for soil erosion assessment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa