RESUMO
The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.
Assuntos
Proteínas de Algas , Chlamydomonas , Cloroplastos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Membranas Intracelulares/metabolismo , Transporte Proteico , Chlamydomonas/química , Chlamydomonas/citologia , Complexos Multiproteicos/metabolismo , Proteínas de Algas/metabolismoRESUMO
The canonical (caspase-1) and noncanonical (comprising caspases 4, 5 and 11; hereafter, caspase-4/5/11) inflammasomes both cleave gasdermin D (GSDMD) to induce pyroptosis1,2. Whereas caspase-1 processes IL-1ß and IL-18 for maturation3-6, no cytokine target has been firmly established for lipopolysaccharide-activated caspase-4/5/117-9. Here we show that activated human caspase-4, but not mouse caspase-11, directly and efficiently processes IL-18 in vitro and during bacterial infections. Caspase-4 cleaves the same tetrapeptide site in pro-IL-18 as caspase-1. The crystal structure of the caspase-4-pro-IL-18 complex reveals a two-site (binary) substrate-recognition mechanism; the catalytic pocket engages the tetrapeptide, and a unique exosite that critically recognizes GSDMD10 similarly binds to a specific structure formed jointly by the propeptide and post-cleavage-site sequences in pro-IL-18. This binary recognition is also used by caspase-5 as well as caspase-1 to process pro-IL-18. In caspase-11, a structural deviation around the exosite underlies its inability to target pro-IL-18, which is restored by rationally designed mutations. The structure of pro-IL-18 features autoinhibitory interactions between the propeptide and the post-cleavage-site region, preventing recognition by the IL-18Rα receptor. Cleavage by caspase-1, -4 or -5 induces substantial conformational changes of IL-18 to generate two critical receptor-binding sites. Our study establishes IL-18 as a target of lipopolysaccharide-activated caspase-4/5. The finding is paradigm shifting in the understanding of noncanonical-inflammasome-mediated defences and also the function of IL-18 in immunity and disease.
Assuntos
Inflamassomos , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Lipopolissacarídeos/farmacologia , Caspases/metabolismo , Caspase 1/metabolismo , PiroptoseRESUMO
Conducting polymers (CPs) with high conductivity and solution processability have made great advances since the pioneering work on doped polyacetylene1-3, thus creating the new field of 'organic synthetic metals,4. Various high-performance CPs have been realized, which enable the applications of several organic electronic devices5,6. Nevertheless, most CPs exhibit hole-dominant (p-type) transport behaviour7,8, whereas the development of n-type analogues lags far behind and only a few exhibit metallic state, typically limited by low doping efficiency and ambient instability. Here we present a facilely synthesized highly conductive n-type polymer poly(benzodifurandione) (PBFDO). The reaction combines oxidative polymerization and in situ reductive n-doping, greatly increasing the doping efficiency, and a doping level of almost 0.9 charges per repeating unit can be achieved. The resultant polymer exhibits a breakthrough conductivity of more than 2,000 S cm-1 with excellent stability and an unexpected solution processability without extra side chains or surfactants. Furthermore, detailed investigations on PBFDO show coherent charge-transport properties and existence of metallic state. The benchmark performances in electrochemical transistors and thermoelectric generators are further demonstrated, thus paving the way for application of the n-type CPs in organic electronics.
RESUMO
Glucose-stimulated insulin secretion (GSIS) in pancreatic islet ß-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on ß-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with ß-cell-specific KCNH6 knockout (ßKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-ßKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.
Assuntos
Exocitose , Insulina , Animais , Camundongos , Fenômenos Eletrofisiológicos , Glucose , Secreção de InsulinaRESUMO
Construction of a high-quality charge transport layer (CTL) with intimate contact with the substrate via tailored interface engineering is crucial to increase the overall charge transfer kinetics and stability for a bulk-heterojunction (BHJ) organic solar cell (OSC). Here, we demonstrate a surface chemistry strategy to achieve a homogeneous composite hole transport layer (C-HTL) with robust substrate contact by self-assembling two-dimensional tungsten disulfide (WS2) nanosheets on a thin molybdenum oxide (MoO3) film-evaporated indium tin oxide (ITO) substrate. It is found that over such a well-defined C-HTL, WS2 is homogeneously tethered on the ITO/MoO3 substrate stemming from the strong electronic coupling interaction between the building blocks, which enables a favorable interfacial configuration in terms of uniformity. As a result, the D18:L8-BO-based OSC with C-HTL exhibits a power conversion efficiency (PCE) of 19.23%, an 11% improvement over the WS2-based control device, and the highest efficiency among single-junction PEDOT-free binary BHJ OSCs.
RESUMO
Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.
Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/genética , MAP Quinase Quinase Quinase 3/genética , Mutação , Sequência de Aminoácidos , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais/metabolismo , Mutação em Linhagem Germinativa , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos MolecularesRESUMO
Developing single-atomic electrocatalysts (SACs) with high activity and stability for electrocatalytic water-splitting has been challenging. Moreover, the practical utilization of SACs is still far from meeting the the theoretical prediction. Herein a facile and easy scale-up fabrication method is proposed for designing a novel carbon-iron-nitrogen (C-Fe-N) electrocatalyst with a single atom electron bridge (C-Fe-N SAEBs), which exhibits lower overpotential and impedance than previously reported electrocatalysts. 0.8-C-Fe-N SAEBs exhibits significant activity and excellent stability in the bi-functional decomposition of water. The excellent performance of the C-Fe-N SAEBs electrocatalyst can be attributed to the strong coupling effect at the interface owing to the formation of a single atom C3-Fe-N local coordination microenvironment at the interface, which enhance the exposure of active sites and charge transfer, and reduced the adsorption energy barrier of intermediates. Theoretical calculation and synchrotron radiation analysis are performed to understand the mechanistic insights behind the experimental results. The results reveal that the active C3-Fe-N local coordination microenvironment at the interface not only improves water-splitting behavior but also provides a deeper understanding of local-interface geometry/electronic structure for improving the electrocatalytic activity. Thus, the proposed electrocatalyst, as well as the mechanistic insights into its properties, presents a significant stride toward practical application.
RESUMO
Sensing pressure and temperature are two important functions of human skin that integrate different types of tactile receptors. In this paper, a deformable artificial flexible multi-stimulus-responsive sensor is demonstrated that can distinguish mechanical pressure from temperature by measuring the impedance and the electrical phase at the same frequency without signal interference. The electrical phase, which is used for measuring the temperature, is totally independent of the pressure by controlling the surface micro-shapes and the ion content of the ionic film. By doping the counter-ion exchange reagent into the ionic liquid before pouring, the upper temperature measuring limit increases from 35 to 50 °C, which is higher than the human body temperature and the ambient temperature on Earth. The sensor shows high sensitivity to pressure (up to 0.495 kPa-1) and a wide temperature sensing range (-10 to 50 °C). A multimodal ion-electronic skin (IEM-skin) with an 8 × 8 multi-stimulus-responsive sensor array is fabricated and can successfully sense the distribution of temperature and pressure at the same time. Finally, the sensors are used for monitoring the touching motions of a robot-arm finger controlled by a remote interactive glove and successfully detect the touching states and the temperature changes of different objects.
RESUMO
The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.
Assuntos
Lactobacillales , Microbiota , Animais , Antibacterianos/farmacologia , Lipopolissacarídeos , Galinhas/genética , Genes Bacterianos , Melhoramento Vegetal , Resistência Microbiana a Medicamentos/genética , Fezes , Bactérias/genética , Lactobacillales/genética , Flavonoides/farmacologiaRESUMO
Deoxynivalenol (DON) is a common mycotoxin in food that mainly pollutes grain crops and feeds, such as barley, wheat and corn. DON has caused widespread concern in the field of food and feed safety. In this study, a colorimetric immunoassay was proposed based on the aggregation of gold nanoparticles (AuNPs) due to the decomposition of Mn2+ from gold-coated manganese dioxide (AuNP@MnO2) nanosheets. In this study, 2-(dihydrogen phosphate)-l-ascorbic acid (AAP) was hydrolyzed by alkaline phosphatase (ALP) and converted to ascorbic acid (AA). Then, AuNP@MnO2 was reduced to Mn2+ and AuNPs aggregation occurred. Using the unique optical characteristics of AuNPs and AuNP@MnO2, visible color changes realized simple detection of DON with high sensitivity and portability. With increasing DON content, the color changed more obviously. To quantitatively detect DON, pictures can be taken and the blue value can be read by a smartphone. The detection limit (Ic10) of this method was 0.098 ng mL-1, which was 326 times higher than that of traditional competitive ELISA, and the detection range was 0.177-6.073 ng mL-1. This method exhibited high specificity with no cross-reaction in other structural analogs. The average recovery rate of DON in corn flour samples was 89.1 %-110.2 %, demonstrating the high accuracy and stability of this assay in actual sample detection. Therefore, the colorimetric immunoassay can be used for DON-related food safety monitoring.
Assuntos
Colorimetria , Ouro , Manganês , Nanopartículas Metálicas , Smartphone , Tricotecenos , Colorimetria/métodos , Ouro/química , Tricotecenos/análise , Tricotecenos/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Manganês/química , Compostos de Manganês/química , Contaminação de Alimentos/análise , Óxidos/química , Limite de DetecçãoRESUMO
Bariatric surgery is increasingly performed to treat severe obesity. As a result of anatomical and physiological changes in the gastrointestinal tract, the pharmacokinetics (PK) of oral drugs can be altered, affecting their efficacy and safety. This includes the class of tyrosine kinase inhibitors (TKIs) which are used to treat chronic myeloid leukemia (CML). This case series describes the clinical course of four CML cases with a history of bariatric surgery. The patients used various TKIs (nilotinib, dasatinib, bosutinib, ponatinib, and imatinib) for which 15 drug levels were measured. The measured TKI concentrations were in part subtherapeutic, and highly variable when compared to mean levels measured in the general population. Multiple drug levels were measured in these patients, as the clinicians were aware of the possible impact of bariatric surgery. The drug levels were used as additional input for clinical decision-making. All four patients required TKI switches and/or dose modifications to achieve an effective and tolerable treatment. Eventually, adequate clinical and molecular remissions were achieved in all cases. In summary, TKI concentrations of patients undergoing bariatric surgery may be subtherapeutic. Moreover, there is substantial interindividual and intraindividual variation, which may be explained by the complex interference of bariatric surgery and associated weight loss. For clinical practice, therapeutic drug monitoring is advised in patients with a history of bariatric surgery in case of suboptimal response or loss of response.
Assuntos
Cirurgia Bariátrica , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Mesilato de Imatinib/uso terapêutico , Mesilato de Imatinib/farmacocinética , Dasatinibe/uso terapêutico , Compostos de Anilina/uso terapêutico , Compostos de Anilina/farmacocinética , Imidazóis/uso terapêutico , Imidazóis/farmacocinética , Imidazóis/administração & dosagem , Piridazinas/uso terapêutico , Piridazinas/farmacocinética , Piridazinas/administração & dosagem , Obesidade Mórbida/cirurgia , Nitrilas , Pirimidinas , QuinolinasRESUMO
Enhancing the structural stability of an enzyme and maintaining its catalytic activity are effective ways to improve enzyme utilization and reduce the cost of drug screening. However, immobilized enzyme activity tends to decrease in existing immobilization techniques due to conformational changes and microenvironmental restrictions. In this paper, we present a facile approach to prepare immobilized acetylcholinesterase (AChE) with high activity by a ZIF-8 in situ immobilization and citric acid (CA) etching strategy. CA breaks the coordination bond of ZIF-8 and produces defects, expanding the pore space, improving substrate accessibility, and fully exposing the active site of the enzyme. The enhancement of the catalytic activity of AChE@ZIF-8-CA was about 6.10-fold compared with the free enzyme. In addition, AChE@ZIF-8-CA exhibited an excellent encapsulation efficiency and good tolerance to temperature, pH, and organic solvents. The relative activity remains at the initial 83.77% even in five repeated experiments. The strategy provides a novel and efficient way to quickly construct highly active immobilized enzymes under mild conditions.
Assuntos
Acetilcolinesterase , Ácido Cítrico , Enzimas Imobilizadas , Ácido Cítrico/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Biomineralização , Concentração de Íons de Hidrogênio , TemperaturaRESUMO
PURPOSE: To evaluate the impact of two different parameters (body position and distension medium) on the rectal sensory test in patients with functional constipation and provide data support for the development of standardized operating procedures in clinical practice. METHODS: Based on a single-center process of the rectal sensory test, 39 patients with functional constipation were recruited for rectal sensory test under different body positions and distension mediums. RESULTS: Among the items of the Constipation Scoring System, the score of frequency of bowel movements showed a negative correlation with the first constant sensation volume (r = -0.323, P = 0.045). Conversely, the score of painful evacuation effort showed a positive correlation with the desire to defecate volume (r = 0.343, P = 0.033). There was a statistically significant difference in the first constant sensation volume (when the distension medium was gas) measured in different body positions (left lateral position, sitting position, squatting position), and the data measured in the squatting position were significantly higher than those in left lateral position (P < 0.05). In terms of research on distension medium, it was found that the first constant sensation volume measured in the squatting position (when the distension medium was water) was significantly lower than that of gas (P < 0.05). CONCLUSION: For patients with functional constipation, there are differences in the results of rectal sensory tests between body positions and distension mediums. When conducting multicenter studies, it is necessary to unify the standard operating procedure (SOP) for operational details to ensure consistency and reliability of the test results.
Assuntos
Constipação Intestinal , Posicionamento do Paciente , Reto , Humanos , Constipação Intestinal/fisiopatologia , Constipação Intestinal/diagnóstico , Feminino , Reto/fisiopatologia , Masculino , Adulto , Pessoa de Meia-Idade , Posicionamento do Paciente/métodos , Defecação/fisiologia , Sensação/fisiologia , Idoso , Adulto JovemRESUMO
Immune recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors often activates proinflammatory NF-κB signalling1. Recent studies indicate that the bacterial metabolite D-glycero-ß-D-manno-heptose 1,7-bisphosphate (HBP) can activate NF-κB signalling in host cytosol2-4, but it is unclear whether HBP is a genuine PAMP and the cognate pattern recognition receptor has not been identified. Here we combined a transposon screen in Yersinia pseudotuberculosis with biochemical analyses and identified ADP-ß-D-manno-heptose (ADP-Hep), which mediates type III secretion system-dependent NF-κB activation and cytokine expression. ADP-Hep, but not other heptose metabolites, could enter host cytosol to activate NF-κB. A CRISPR-Cas9 screen showed that activation of NF-κB by ADP-Hep involves an ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with forkhead-associated domain) axis. ADP-Hep directly binds the N-terminal domain of ALPK1, stimulating its kinase domain to phosphorylate and activate TIFA. The crystal structure of the N-terminal domain of ALPK1 and ADP-Hep in complex revealed the atomic mechanism of this ligand-receptor recognition process. HBP was transformed by host adenylyltransferases into ADP-heptose 7-P, which could activate ALPK1 to a lesser extent than ADP-Hep. ADP-Hep (but not HBP) alone or during bacterial infection induced Alpk1-dependent inflammation in mice. Our findings identify ALPK1 and ADP-Hep as a pattern recognition receptor and an effective immunomodulator, respectively.
Assuntos
Açúcares de Adenosina Difosfato/imunologia , Burkholderia cenocepacia , Citosol , Imunidade Inata , Moléculas com Motivos Associados a Patógenos/imunologia , Proteínas Quinases/metabolismo , Yersinia pseudotuberculosis , Açúcares de Adenosina Difosfato/metabolismo , Animais , Infecções por Burkholderia/enzimologia , Infecções por Burkholderia/imunologia , Infecções por Burkholderia/patologia , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/imunologia , Burkholderia cenocepacia/metabolismo , Sistemas CRISPR-Cas , Cristalografia por Raios X , Citocinas/biossíntese , Citosol/enzimologia , Citosol/imunologia , Dissacarídeos/metabolismo , Ativação Enzimática , Feminino , Edição de Genes , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Imunomodulação , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , NF-kappa B/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/metabolismoRESUMO
BACKGROUND: Colorectal cancer (CRC) is a global health issue with noticeably high incidence and mortality. Microsimulation models offer a time-efficient method to dynamically analyze multiple screening strategies. The study aimed to identify the efficient organized CRC screening strategies for Shenzhen City. METHODS: A microsimulation model named CMOST was employed to simulate CRC screening among 1 million people without migration in Shenzhen, with two CRC developing pathways and real-world participation rates. Initial screening included the National Colorectal Polyp Care score (NCPCS), fecal immunochemical test (FIT), and risk-stratification model (RS model), followed by diagnostic colonoscopy for positive results. Several start-ages (40, 45, 50 years), stop-ages (70, 75, 80 years), and screening intervals (annual, biennial, triennial) were assessed for each strategy. The efficiency of CRC screening was assessed by number of colonoscopies versus life-years gained (LYG). RESULTS: The screening strategies reduced CRC lifetime incidence by 14-27 cases (30.9-59.0%) and mortality by 7-12 deaths (41.5-71.3%), yielded 83-155 LYG, while requiring 920 to 5901 colonoscopies per 1000 individuals. Out of 81 screening, 23 strategies were estimated efficient. Most of the efficient screening strategies started at age 40 (17 out of 23 strategies) and stopped at age 70 (13 out of 23 strategies). Predominant screening intervals identified were annual for NCPCS, biennial for FIT, and triennial for RS models. The incremental colonoscopies to LYG ratios of efficient screening increased with shorter intervals within the same test category. Compared with no screening, when screening at the same start-to-stop age and interval, the additional colonoscopies per LYG increased progressively for FIT, NCPCS and RS model. CONCLUSION: This study identifies efficient CRC screening strategies for the average-risk population in Shenzhen. Most efficient screening strategies indeed start at age 40, but the optimal starting age depends on the chosen willingness-to-pay threshold. Within insufficient colonoscopy resources, efficient FIT and NCPCS screening strategies might be CRC initial screening strategies. We acknowledged the age-dependency bias of the results with NCPCS and RS.
Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Humanos , Adulto , Idoso , Detecção Precoce de Câncer/métodos , Colonoscopia , Fatores de Risco , Neoplasias Colorretais/prevenção & controle , Sangue Oculto , Análise Custo-Benefício , Programas de Rastreamento/métodosRESUMO
Administration of acetylsalicylic acid (ASA) at early stage after surgery for spontaneous intracerebral hemorrhage (SICH) may increase the risk of postoperative intracranial bleeding (PIB), because of potential inhibition of platelet function. This study aimed to investigate whether early ASA administration after surgery was related to increased risk of PIB. This retrospective study enrolled SICH patients receiving surgery from September 2019 to December 2022 in seven medical institution. Based on postoperative ASA administration, patients who continuously received ASA more than three days within seven days post-surgery were identified as ASA users, otherwise as non-ASA users. The primary outcome was symptomatic PIB events within seven days after surgery. Incidence of PIB was compared between ASA users and non-ASA users using survival analysis. This study included 744 appropriate patients from 794 SICH patients. PIB occurred in 42 patients. Survival analysis showed no statistical difference between ASA users and non-ASA users in incidence of PIB (P = 0.900). Multivariate Cox analysis demonstrated current smoker (hazard ratio [HR], 2.50, 95%CI, 1.33-4.71, P = 0.005), dyslipidemia (HR = 3.03; 95%CI, 1.31-6.99; P = 0.010) and pre-hemorrhagic antiplatelet therapy (HR = 3.05; 95% CI, 1.64-5.68; P < 0.001) were associated with PIB. Subgroup analysis manifested no significant difference in incidence of PIB between ASA users and non-ASA users after controlling the effect from factors of PIB (i.e., sex, age, current smoker, regular drinker, dyslipidemia, pre-hemorrhagic antiplatelet therapy and hematoma location). This study revealed that early ASA administration to SICH patients after surgery was not related to increased risk of PIB.
Assuntos
Aspirina , Hemorragia Cerebral , Inibidores da Agregação Plaquetária , Humanos , Masculino , Feminino , Aspirina/efeitos adversos , Aspirina/administração & dosagem , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/administração & dosagem , Hemorragia Pós-Operatória/epidemiologia , Fatores de Risco , Adulto , Hemorragias Intracranianas/epidemiologiaRESUMO
Among the nine subtypes of human voltage-gated sodium (Nav) channels, the brain and cardiac isoforms, Nav1.1 and Nav1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Nav1.1-ß4 complex at 3.3 Å resolution here and the Nav1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Nav1.1 and Nav1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Nav1.1 and Nav1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.
Assuntos
Canalopatias/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-AtividadeRESUMO
Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.
Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Técnicas de Amplificação de Ácido Nucleico , Perciformes , Sensibilidade e Especificidade , Animais , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Iridovirus/isolamento & purificação , Iridovirus/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Viral/genética , Proteínas do Capsídeo/genéticaRESUMO
Objective: The study aimed to evaluate the impact of OLIF on spinal-pelvic sagittal parameters and its correlation with clinical outcomes in patients with degenerative lumbar spondylolisthesis. Methods: A retrospective analysis of 43 patients (23 males, 20 females) with lumbar 4/5 degenerative spondylolisthesis who underwent OLIF from January 2018 to January 2023 was conducted. Key parameters studied included SP, DH, FH, AS, LL, SS, PT, PI, and LASD. Results: All surgeries were successfully completed according to the original plan, and the minimum follow-up time was greater than 6 months, with a mean operation time of 198.21±51.32 min; the mean intraoperative bleeding volume was 121.00±56.88 ml. The VAS score of lumbar pain and ODI index decreased from the preoperative VAS score, and the ODI index of lower lumbar pain from the preoperative VAS score of 6.50±1.36 and 74.36±6.27 to the postoperative Lumbar pain of 3.20±1.28 and 32.41±8.21, respectively, and the differences were statistically significant (P < .05). 6.27 to 3.20±1.28 and 32.41±8.21 at the final follow-up visit. The differences were statistically significant (P < .05). The results of Pearson correlation analysis showed positive correlation between postoperative LL and FH, SP and AS, VAS (P < .05), and service correlation between SP and SS, LASD (P < .05), and correlation between pre- and post-surgery difference of LL, FH, SP and the improvement rate of ODI and VAS scores (P < .05), with the difference of pre- and post-surgery difference of LL, FH and the ODI, VAS score improvement rate were the strongest correlation. Postoperatively, significant improvements were observed in LL and FH. Pearson correlation analysis indicated a positive correlation between changes in sagittal parameters and clinical outcomes, measured by VAS and ODI scores. Conclusion: The postoperative spine-pelvis sagittal parameters were significantly improved compared with the preoperative ones, and the changes of the spine-pelvis sagittal parameters before and after the operation were correlated with the clinical outcomes, among which the differences of LL and FH had the strongest correlation with the improvement rates of ODI and VAS scores. OLIF effectively improved spinal-pelvic sagittal parameters and clinical outcomes in degenerative lumbar spondylolisthesis, with changes in LL and FH showing the strongest correlation with patient-reported outcome improvements. An oblique lateral interbody fusion can effectively reconstruct spine-pelvis sagittal parameters in patients with degenerative lumbar spondylolisthesis.
Assuntos
Vértebras Lombares , Fusão Vertebral , Espondilolistese , Humanos , Feminino , Masculino , Fusão Vertebral/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Vértebras Lombares/cirurgia , Vértebras Lombares/fisiopatologia , Espondilolistese/cirurgia , Idoso , Resultado do Tratamento , Adulto , Medição da DorRESUMO
Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.