RESUMO
The present study investigated the combined production of reclaimed water for reuse purposes and polyhydroxyalkanoates (PHA) from an agro-food industrial wastewater. A pilot plant implementing a two-stage process for PHA production was studied. It consisted of a mainstream sequencing batch membrane bioreactor (SBMBR) in which selection of PHA-accumulating organisms and wastewater treatment were carried out in, and a side-stream fed-batch reactor (FBR) where the excess sludge from the SBMBR was used for PHA accumulation. The performance of the SBMBR was compared with that of a conventional sequencing batch reactor (SBR) treating the same wastewater under different food to microorganisms' ratios (F/M) ranging between 0.125 and 0.650 kgCOD kgTSS-3 d-1. The SBMBR enabled to obtain very high-quality effluent in compliance with the relevant national (Italy) and European regulations (Italian DM 185/03 and EU, 2020/741) in the field of wastewater reclamation, whereas the performances in the SBR collapsed at F/M higher than 0.50 kgCOD kgTSS-1d-1. A maximum intracellular storage of 45% (w/w) and a production yield of 0.63 gPHA L-1h-1 were achieved when the SBMBR system was operated with a F/M ratio close to 0.50 kgCOD kgTSS-1d-1. This resulted approximately 35% higher than those observed in the SBR, since the ultrafiltration membrane avoided the washout of dispersed and filamentous bacteria capable of storing PHA. Furthermore, while maximizing PHA productivity in conventional SBR systems led to process dysfunctions, in the SBMBR system it helped mitigate these issues by reducing membrane fouling behaviour. The results of this study supported the possibility to achieve combined recovery of reclaimed water and high-value added bioproducts using membrane technology, leading the way for agro-food industrial wastewater valorization in the frame of a circular economy model.
Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Reatores Biológicos/microbiologia , Esgotos , BactériasRESUMO
Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L-1), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment.
Assuntos
Desnitrificação , Nitrificação , Águas Residuárias , Biomassa , Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos LíquidosRESUMO
This research elucidates the pollutants (nutrients and carbon) removal performance and nitrous oxide (N2O) emissions of two pilot plants. Specifically, a University of Cape Town (UCT) Membrane Bioreactor (MBR) plant and an Integrated Fixed Film Activated Sludge (IFAS)-UCT-MBR plant were investigated. The plants were fed with real wastewater augmented with acetate and glycerol in order to control the influent carbon nitrogen ratio (C/N). The short-term effect of the inlet C/N ratio variation (C/Nâ¯=â¯5 mgCOD/mgN and C/Nâ¯=â¯10 mgCOD/mgN) on the behaviour of both plants was investigated. The results showed that the IFAS-UCT-MBR configuration provided the best performance in terms of pollutants removal at the two investigated C/N ratios. Furthermore, the lowest N2O emission (with respect to the influent nitrogen) was observed in the IFAS-UCT-MBR configuration, thus suggesting a potential beneficial effect of the biofilm in the emission reduction. However, the membrane of the IFAS-UCT-MBR showed a greater fouling tendency compared to the UCT-MBR configuration. This result, likely related to the biofilm detached from carriers, could seriously affect the indirect GreenHouse Gas emissions due to the increase of the energy requirement for permeate extraction with the increase of membrane fouling.
Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Membranas Artificiais , Nitrogênio , Águas ResiduáriasRESUMO
This study aimed at evaluating the nitrous oxide (N2O) emissions from membrane bioreactors (MBRs) for wastewater treatment. The study investigated the N2O emissions considering multiple influential factors over a two-year period: (i) different MBR based process configurations; (ii) wastewater composition (municipal or industrial); (iii) operational conditions (i.e. sludge retention time, carbon-to-nitrogen ratio, C/N, hydraulic retention time); (iv) membrane modules. Among the overall analysed configurations, the highest N2O emission occurred from the aerated reactors. The treatment of industrial wastewater, contaminated with salt and hydrocarbons, provided the highest N2O emission factor (EF): 16% of the influent nitrogen for the denitrification/nitrification-MBR plant. The lowest N2O emission (EF = 0.5% of the influent nitrogen) was obtained in the biological phosphorus removal-moving bed-MBR plant likely due to an improvement in biological performances exerted by the co-presence of both suspended and attached biomass. The influent C/N ratio has been identified as a key factor affecting the N2O production. Indeed, a decrease of the C/N ratio (from 10 to 2) promoted the increase of N2O emissions in both gaseous and dissolved phases, mainly related to a decreased efficiency of the denitrification processes.
Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos Líquidos , Reatores Biológicos , Desnitrificação , Nitrogênio , Óxido Nitroso , Esgotos , Inquéritos e QuestionáriosRESUMO
The aim of the present study was to investigate the nitrous oxide (N2O) emissions from a moving bed based Integrated Fixed Film Activated Sludge (IFAS) - membrane bioreactor (MBR) pilot plant, designed according to the University of Cape Town (UCT) layout. The experimental campaign had a duration of 110 days and was characterized by three different sludge retention time (SRT) values (∞, 30 d and 15 d). Results highlighted that N2O concentrations decreased when the biofilm concentrations increased within the aerobic reactor. Results have shown an increase of N2O with the decrease of SRT. Specifically, an increase of N2O-N emission factor occurred with the decrease of the SRT (0.13%, 0.21% and 0.76% of influent nitrogen for SRT = ∞, SRT = 30 d and SRT = 15 d, respectively). Moreover, the MBR tank resulted the key emission source (up to 70% of the total N2O emission during SRT = ∞ period) whereas the highest N2O production occurred in the anoxic reactor. Moreover, N2O concentrations measured in the permeate flow were not negligible, thus highlighting its potential detrimental contribution for the receiving water body. The role of each plant reactor as N2O-N producer/consumer varies with the SRT variation, indeed the aerobic reactor was a N2O consumer at SRT = ∞ and a producer at SRT = 30 d.
Assuntos
Reatores Biológicos , Óxido Nitroso , Biofilmes , Nitrogênio , EsgotosRESUMO
The present paper reports the results of a nitrous oxide (N2O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N2O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N2O was, however, also found in the anaerobic reactor, thus indicating a probable occurrence of the denitrifying phosphate accumulating organism activity. The highest N2O fluxes were emitted from the aerated reactors (3.09 g N2ON m-2 h-1 and 9.87 g N2ON m-2 h-1, aerobic and MBR tank, respectively). The emission factor highlighted that only 1% of the total treated nitrogen was emitted from the pilot plant. Furthermore, the measured N2O concentrations in the permeate flow were comparable with other reactors. Nitrous oxide mass balances outlined a moderate production also in the MBR reactor despite the low hydraulic retention time. On the other hand, the mass balance showed that in the aerobic reactor a constant consumption of nitrous oxide (up to almost 15 mg N2O h-1) took place, due to the high amount of stripped gas.
Assuntos
Reatores Biológicos , Óxido Nitroso/análise , Eliminação de Resíduos Líquidos/instrumentação , Desnitrificação , Gases/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Fósforo/isolamento & purificação , Projetos Piloto , Esgotos , Eliminação de Resíduos Líquidos/métodosRESUMO
The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed. The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experiments, suggesting that the biofilm in the aerobic compartment might have sustained the complete nitrification of the influent ammonia, even for concentrations higher than 100 mg L-1. The irreversible resistance due to superficial cake deposition was the mechanism that mostly affected the membrane fouling. Moreover, it was noticed an increase of the resistance due pore blocking likely due to the increase of the EPSBound fraction that could derive by biofilm detachment. The bacterial strains isolated from aerobic tank are wastewater bacteria known for exhibiting efficient heterotrophic nitrification-aerobic denitrification and producing biofilm.
Assuntos
Reatores Biológicos , Nitrificação , Esgotos , Desnitrificação , Nitrogênio , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
This work aims to investigate the stability of aerobic granular sludge in the long term, focusing on the clogging of the granular sludge porosity exerted by the extracellular polymeric substances (EPSs). The effects of different cycle lengths (short and long-term cycle) on the granular sludge stability were investigated. Results obtained outlined that during the short duration cycle, the formation and breakage of the aerobic granules were continuously observed. During this period, the excess of EPS production contributed to the clogging of the granules porosity, causing their breakage in the long run. During the long-duration cycle, the extended famine period entailed a greater EPSs consumption by bacteria, thus limiting the clogging of the porosity, and allowed obtaining stable aerobic granules. Reported results demonstrated that an excess in EPSs content could be detrimental to the stability of aerobic granular sludge in the long-term.
Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Purificação da Água/métodos , Aerobiose , Biomassa , Polímeros , PorosidadeRESUMO
Minimization of excess sludge produced by wastewater treatment plants has become a topical theme nowadays. One of the most used approaches to achieve this aim is the anaerobic side-stream reactor (ASSR) process. This is considered affected by the hydraulic retention time (HRT) of the anaerobic reactor, the anaerobic sludge loading rate (ASLR) and the sludge interchange ratio (SIR), although, studies available in the literature did not reflect a clear relationship with the sludge minimization yields. To overcome this, a novel parameter namely anaerobic exposure time (AET) was defined and related to reduction of the observed yield coefficient (Yobs) in a lab-scale plant implementing the ASSR process. Furthermore, the AET was validated by performing a detailed and thorough review of previous literature. Excess sludge production was successfully reduced (10-60 %) with the increase of the AET (7.9-13 h/d), although maintaining the same HRT in the ASSR and a constant sludge interchange ratio (SIR) (100 %). A strong correlation (Pearson = 0.763) was found between the AET, and the Yobs reduction reported in previous studies, also indicating a linear relationship (R2 = 0.92) between these parameters. Contrarily, the correlation between the Yobs with the ASLR and the ASSR-HRT resulted moderate (Pearson = 0.186) or weak (Pearson=-0.346), respectively. Overall, while operating at low AET (< 6 h), maintenance and uncoupling metabolism were found the main sludge reduction mechanisms. Increasing the AET (>8 h) favoured the occurrence of extracellular polymeric substances (EPS) hydrolysis and endogenous decay mechanisms, which improved excess sludge reduction. To conclude, the AET could be considered a reliable parameter to be used for design or control purposes for the ASSR-based process.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , HidróliseRESUMO
The present study has focused on the mainstream integration of polyhydroxyalkanoate (PHA) production with industrial wastewater treatment by exploiting three different technologies all operating in sequencing batch reactors (SBR): conventional activated sludge (AS-SBR), membrane bioreactor (AS-MBR) and aerobic granular sludge (AGS). A full aerobic feast/famine strategy was adopted to obtain enrichment of biomass with PHA-storing bacteria. All the systems were operated at different organic loading (OLR) rate equal to 1-2-3 kgCOD/m3âd in three respective experimental periods. The AS-MBR showed the better and stable carbon removal performance, whereas the effluent quality of the AS-SBR and AGS deteriorated at high OLR. Biomass enrichment with PHA-storing bacteria was successfully obtained in all the systems. The AS-MBR improved the PHA productivity with increasing OLR (max 35% w/w), whereas the AS-SBR reduced the PHA content (max 20% w/w) above an OLR threshold of 2 kgCOD/m3âd. In contrast, in the AGS the increase of OLR resulted in a significant decrease in PHA productivity (max 14% w/w) and a concomitant increase of extracellular polymers (EPS) production (max 75% w/w). Results demonstrated that organic carbon was mainly driven towards the intracellular storage pathway in the AS-SBR (max yield 51%) and MBR (max yield 61%), whereas additional stressors in AGS (e.g., hydraulic selection pressure, shear forces) induced bacteria to channel the COD into extracellular storage compounds (max yield 50%) necessary to maintain the granule's structure. The results of the present study indicated that full-aerobic feast/famine strategy was more suitable for flocculent sludge-based technologies, although biofilm-like systems could open new scenarios for other biopolymers recovery (e.g., EPS). Moreover, the AS-MBR resulted the most suitable technology for the integration of PHA production in a mainstream industrial wastewater treatment plant, considering the greater process stability and the potential reclamation of the treated wastewater.
Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Esgotos/química , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodosRESUMO
Drinking water treatment plants (DWTPs) are facing emerging challenges affecting raw water quality. In addition, the new regulatory framework (EU 2184/2020) sets stricter limits for turbidity and percentile statistics for continuous compliance, demanding greater robustness of the treatment processes. To achieve this aim, this study proposes a turbidity robustness index (TRI), named TRI95B, to be used as a warning tool for detecting deviations from water quality standards. TRI95B has been compared with the TRIs existing in the literature. Furthermore, the TRI95B validation has been performed by a three-year monitoring dataset of a full-scale DWTP. The proposed TRI95B index has two key novelties compared to the existing indices required for adapting to the new drinking water regulation: i. introduces the 95th percentile as a statistical indicator; ii. considers an additional term that sets an alert when a threshold value is exceeded. The comparison results suggest a better correspondence to the real plant performances of TRI95B than the other TRIs. Indeed, both the sensitivity and specificity of TRI95B were significantly higher than the other TRIs, indicating a better capacity to correctly classify both positive and negative cases. Moreover, while the previous TRIs identify a critical operating condition when the turbidity goal was significantly exceeded, TRI95B highlights a failure condition at a lower discrepancy. Therefore, TRI95B is also able to identify short-duration and low magnitude failures, thus coping with the purpose of the new regulation for drinking water.
RESUMO
Contaminated marine sediments represent a critical threat towards human health and ecosystems, since they constitute a potential reservoir of toxic compounds release. In the present study, a bioslurry reactor was studied for the treatment of real marine sediments contaminated by petroleum hydrocarbons. The experimental campaign was divided in two periods: in the first period, microcosm trials were carried out to achieve useful indicators for biological hydrocarbon removal from sediments. The microcosm trials highlighted that the inoculum of halotolerant allochthonous bacteria provided the highest performance followed by autochthonous biomass. Based on the achieved results, in the second experimental period a bioslurry reactor was started up, based on a semisolid stirred tank reactor (STR) operated in batch mode. The process performances have been evaluated in terms of total petroleum hydrocarbon (TPH) removal, coupled with the characterization of microbial community through a Next Generation Sequencing (NGS) and phytotoxicity tests through the Germination Index (GI) with Lepidium Sativum seeds. The achieved results showed good hydrocarbons removal, equal to 40%, with a maximum removal rate of 220 mgTPH kg-1 d-1, but highlighting that high contaminant concentrations might affect negatively the overall removal performance. In general, the observed results were encouraging towards the feasibility of biological treatment of marine sediments contaminated by hydrocarbons. The microbiological analysis allowed the identification of taxa most involved in the degradation of TPH, highlighting after the treatment a shift in the microbial community from that of the raw sediment.
Assuntos
Ecossistema , Petróleo , Biodegradação Ambiental , Sedimentos Geológicos , Humanos , HidrocarbonetosRESUMO
The biodegradability and treatability of a young (3 years old) municipal landfill leachate was evaluated by means of chemical oxygen demand (COD) fractionation tests, based on respirometric techniques. The tests were performed using two different biomasses: one cultivated from the raw leachate (autochthonous biomass) and the other collected from a conventional municipal wastewater treatment plant after its acclimation to leachate (allochthonous biomass). The long term performances of the two biomasses were also studied. The results demonstrated that the amount of biodegradable COD in the leachate was strictly dependent on the biomass that was used to perform the fractionation tests. Using the autochthonous biomass, the amount of biodegradable organic substrate resulted in approximately 75% of the total COD, whereas it was close to 40% in the case of the allochthonous biomass, indicating the capacity of the autochthonous biomass to degrade a higher amount of organic compounds present in the leachate. The autochthonous biomass was characterized by higher biological activity and heterotrophic active fraction (14% vs 7%), whereas the activity of the allochthonous biomass was significantly affected by inhibitory compounds in the leachate, resulting in a lower respiration rate (SOURâ¯=â¯13â¯mg O2 gVSS-1â¯h-1vs 37â¯mg O2 gVSS-1â¯h-1). The long-term performance of the autochthonous and allochthonous biomasses indicated that the former was more suitable for the treatment of raw landfill leachate, ensuring higher removal performance towards the organic pollutants.
Assuntos
Biomassa , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Fracionamento Químico , Cinética , EsgotosRESUMO
The present paper investigated an Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) system monitored for 340 days. In particular, the short-term effects of some operational parameters variation was evaluated. Results showed a decrease of the removal rates under low C/N values. Respirometry results highlighted that activated sludge was more active in the organic carbon removal. Conversely, biofilm has a key role during nitrification. The major fouling mechanism was represented by the cake deposition (irreversible).
Assuntos
Reatores Biológicos , Esgotos , Biofilmes , Membranas Artificiais , NitrificaçãoRESUMO
This study investigated the chance to couple the conventional Oxic Settling Anaerobic (OSA) process with a thermic treatment at moderate temperature (35 °C). The maximum excess sludge reduction rate (80%) was achieved when the plant was operated under 3 h of hydraulic retention time (HRT). Compared with the conventional OSA system, the thermic treatment enabled a further improvement in excess sludge minimization of 35%. The observed yield coefficient decreased from 0.25 gTSS gCOD-1 to 0.10 gTSS gCOD-1 when the temperature in the anaerobic reactor was increased to 35 °C, despite the lower HRT (3 h vs 6 h). Moreover, the thermic treatment enabled the decrease of filamentous bacteria, thereby improving the sludge settling properties. The thermic treatment enhanced the destruction of extracellular polymeric substances and the increase of endogenous decay rate (from 0.64 d-1 to 1.16 d-1) that reduced the biomass active fraction (from 22% to 4%).
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Biomassa , Reatores Biológicos , TemperaturaRESUMO
A University of Cape Town Integrated Fixed-Film Activated Sludge Membrane Bioreactor (UCT-IFAS-MBR) pilot plant was operated at different values of the sludge retention time (SRT). Three SRTs were investigated at different durations: indefinitely, 30 and 15 days. The organic carbon, nitrogen and phosphorus removal, kinetic/stoichiometric parameters, membrane fouling tendency and sludge filtration properties were assessed. The findings showed that by decreasing the SRT, the pilot plant could maintain excellent carbon removal efficiencies throughout the experiments. In contrast, the biological carbon removal showed a slight nitrification and was slightly affected by the decrease of the SRT, showing high performance (approximately 91%, on average). Thus, the biofilm might have helped sustain the nitrification throughout the experiments. The average phosphorus removal performance increased slightly with a decrease in SRT, achieving the maximum efficiency (61.5%) at a SRT of 15 days. After a 30-day SRT, an increase in resistance due to pore blocking and a general worsening of the membrane filtration properties occurred.
Assuntos
Reatores Biológicos , Esgotos , Biofilmes , Membranas Artificiais , Nitrificação , Nitrogênio , Eliminação de Resíduos LíquidosRESUMO
Biological nutrient removal performances and kinetics of autochthonous marine biomass in forms of activated sludge and aerobic granular sludge were investigated under different salinity and sludge retention time (SRT). Both the biomasses, cultivated from a fish-canning wastewater, were subjected to stepwise increases in salinity (+2 gNaCl L-1), from 30 gNaCl L-1 up to 50 gNaCl L-1 with the aim to evaluate the maximum potential in withstanding salinity by the autochthonous marine biomass. Microbial marine species belonging to the genus of Cryomorphaceae and of Rhodobacteraceae were found dominant in both the systems at the maximum salinity tested (50 gNaCl L-1). The organic carbon was removed with a yield of approximately 98%, irrespective of the salinity. Similarly, nitrogen removal occurred via nitritation-denitritation and was not affected by salinity. The ammonium utilization rate and the nitrite utilization rate were approximately of 3.60 mgNH4-N gVSS-1h-1 and 10.0 mgNO2-N gVSS-1h-1, respectively, indicating a high activity of nitrifying and denitrifying bacteria. The granulation process did not provide significant improvements in the nutrients removal process likely due to the stepwise salinity increase strategy. Biomass activity and performances resulted affected by long SRT (27 days) due to salt accumulation within the activated sludge flocs and granules. In contrast, a lower SRT (14 days) favoured the discharge of the granules and flocs with higher inert content, thereby enhancing the biomass renewing. The obtained results demonstrated that the use of autochthonous-halophilic bacteria represents a valuable solution for the treatment of high-strength carbon and nitrogen saline wastewater in a wide range of salinity. Besides, the stepwise increase in salinity and the operation at low SRT enabled high metabolic activity and to avoid excessive accumulation of salt within the biomass aggregates, limiting their physical destructuration due to the increase in loosely-bound exopolymers.
Assuntos
Salinidade , Esgotos , Bactérias , Reatores Biológicos , Cinética , NitrogênioRESUMO
The influence of the main operational variables on N2O emissions from an Integrated Fixed Film Activated Sludge University of Cape Town membrane Bioreactor pilot plant was studied. Nine operational cycles (total duration: 340days) were investigated by varying the value of the mixed liquor sludge retention time (SRT) (Cycles 1-3), the feeding ratio between carbon and nitrogen (C/N) (Cycles 4-6) and simultaneously the hydraulic retention time (HRT) and the SRT (Cycles 7-9). Results show a huge variability of the N2O concentration in liquid and off-gas samples (ranged from 10-1µgN2O-NL-1 to 103µgN2O-NL-1). The maximum N2O concentration (1228µgN2O-NL-1) in the off-gas samples occurred in the anoxic reactor at the lowest C/N value confirming that unbalanced C/N promotes the N2O emission during denitrification. The aerated reactors (aerobic and MBR) have been the major N2O emitters during all the three Phases.
Assuntos
Reatores Biológicos , Óxido Nitroso , Esgotos , Desnitrificação , Eliminação de Resíduos LíquidosRESUMO
Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO3- removal and N2O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO3- concentrations (30, 50, 75mgNO3-NL-1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO2-) and nitrous oxide (N2O). In particular, it was observed that N2O production represent only a small fraction of removed NO3- during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%).
RESUMO
The modification of the physical properties of aerobic granular sludge treating fish-canning wastewater is discussed in this paper. The structure and composition of the Extracellular Polymeric Substances (EPSs) were analyzed at different salinity levels and related to granules stability. Results outlined that the total EPSs content increased with salinity, despite the EPSs increment was not proportional to the salt concentration. Moreover, the EPSs structure was significantly modified by salinity, leading to a gradual increase of the not-bound EPSs fraction, which was close to the 50% of the total EPSs content at 75gNaClL-1. The increasing salt concentration modified also the EPSs composition, causing the gradual reduction of protein content resulting in a decrease of granule hydrophobicity. The results pointed out that the granules stability significantly reduced above 50gNaClL-1, suggesting the existence of a salinity threshold above which granules stability is compromised.