Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 464(7289): 713-20, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20360734

RESUMO

Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.


Assuntos
Variações do Número de Cópias de DNA/genética , Doença , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Artrite Reumatoide/genética , Estudos de Casos e Controles , Doença de Crohn/genética , Diabetes Mellitus/genética , Frequência do Gene/genética , Humanos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Projetos Piloto , Polimorfismo de Nucleotídeo Único/genética , Controle de Qualidade
2.
Genet Epidemiol ; 36(6): 642-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22807252

RESUMO

New sequencing technologies provide an opportunity for assessing the impact of rare and common variants on complex diseases. Several methods have been developed for evaluating rare variants, many of which use weighted collapsing to combine rare variants. Some approaches require arbitrary frequency thresholds below which to collapse alleles, and most assume that effect sizes for each collapsed variant are either the same or a function of minor allele frequency. Some methods also further assume that all rare variants are deleterious rather than protective. We expect that such assumptions will not hold in general, and as a result performance of these tests will be adversely affected. We propose a hierarchical model, implemented in the new program CHARM, to detect the joint signal from rare and common variants within a genomic region while properly accounting for linkage disequilibrium between variants. Our model explores the scale, rather than the center of the odds ratio distribution, allowing for both causative and protective effects. We use cross-validation to assess the evidence for association in a region. We use model averaging to widen the range of disease models under which we will have good power. To assess this approach, we simulate data under a range of disease models with effects at common and/or rare variants. Overall, our method had more power than other well-known rare variant approaches; it performed well when either only rare, or only common variants were causal, and better than other approaches when both common and rare variants contributed to disease.


Assuntos
Variação Genética , Modelos Genéticos , Doenças Raras/genética , Cromossomos Humanos Par 17 , Frequência do Gene , Humanos , Funções Verossimilhança , Desequilíbrio de Ligação , Modelos Logísticos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
3.
Hum Hered ; 74(3-4): 205-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23594498

RESUMO

OBJECTIVE: To determine whether accounting for gene-environment (G×E) interactions improves the power to detect associations between rare variants and a disease, we have extended three statistical methods and compared their power under various simulated disease models. METHODS: To test for association of a group of rare variants with a disease, Min-P uses the lowest p value within the group of variants, CAST (Cohort Allelic Sums Test) uses an indicator variable to quantify the rare alleles within the group of variants, and SKAT (Sequence Kernel Association Test) uses a logistic regression based on kernel machine. For each method, we incorporate a term for the G×E interaction and test for association and interaction jointly. RESULTS: When testing for disease association with a set of rare variants, accounting for G×E interactions can improve power in specific situations (pure interaction or high proportion of causal variants interacting with the environment). However, the power of this approach can decrease, in particular in the presence of main genetic or environmental effects. Among the methods compared, the optimized and weighted SKAT performed best, whether to test for genetic association or to test it jointly with G×E interactions. CONCLUSION: This approach can be used in specific situations but is not appropriate for a primary analysis.


Assuntos
Interação Gene-Ambiente , Predisposição Genética para Doença , Variação Genética , Humanos , Modelos Genéticos , Modelos Estatísticos
4.
Genet Epidemiol ; 35(6): 536-48, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21769931

RESUMO

Accurate assignment of copy number at known copy number variant (CNV) loci is important for both increasing understanding of the structural evolution of genomes as well as for carrying out association studies of copy number with disease. As with calling SNP genotypes, the task can be framed as a clustering problem but for a number of reasons assigning copy number is much more challenging. CNV assays have lower signal-to-noise ratios than SNP assays, often display heavy tailed and asymmetric intensity distributions, contain outlying observations and may exhibit systematic technical differences among different cohorts. In addition, the number of copy-number classes at a CNV in the population may be unknown a priori. Due to these complications, automatic and robust assignment of copy number from array data remains a challenging problem. We have developed a copy number assignment algorithm, CNVCALL, for a targeted CNV array, such as that used by the Wellcome Trust Case Control Consortium's recent CNV association study. We use a Bayesian hierarchical mixture model that robustly identifies both the number of different copy number classes at a specific locus as well as relative copy number for each individual in the sample. This approach is fully automated which is a critical requirement when analyzing large numbers of CNVs. We illustrate the methods performance using real data from the Wellcome Trust Case Control Consortium's CNV association study and using simulated data.


Assuntos
Variações do Número de Cópias de DNA , Dosagem de Genes , Algoritmos , Teorema de Bayes , Análise por Conglomerados , Estudos de Coortes , Simulação por Computador , Genótipo , Humanos , Modelos Genéticos , Epidemiologia Molecular/métodos
5.
Cancer Res ; 76(7): 1860-8, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921337

RESUMO

Prostate cancer is the most frequently diagnosed and second most fatal nonskin cancer among men in the United States. African American men are two times more likely to develop and die of prostate cancer compared with men of other ancestries. Previous whole genome or exome tumor-sequencing studies of prostate cancer have primarily focused on men of European ancestry. In this study, we sequenced and characterized somatic mutations in aggressive (Gleason ≥7, stage ≥T2b) prostate tumors from 24 African American patients. We describe the locations and prevalence of small somatic mutations (up to 50 bases in length), copy number aberrations, and structural rearrangements in the tumor genomes compared with patient-matched normal genomes. We observed several mutation patterns consistent with previous studies, such as large copy number aberrations in chromosome 8 and complex rearrangement chains. However, TMPRSS2-ERG gene fusions and PTEN losses occurred in only 21% and 8% of the African American patients, respectively, far less common than in patients of European ancestry. We also identified mutations that appeared specific to or more common in African American patients, including a novel CDC27-OAT gene fusion occurring in 17% of patients. The genomic aberrations reported in this study warrant further investigation of their biologic significant role in the incidence and clinical outcomes of prostate cancer in African Americans. Cancer Res; 76(7); 1860-8. ©2016 AACR.


Assuntos
Neoplasias da Próstata/patologia , Negro ou Afro-Americano , Humanos , Masculino , Mutação
6.
Philos Trans R Soc Lond B Biol Sci ; 360(1459): 1387-93, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16048782

RESUMO

The coalescent with recombination describes the distribution of genealogical histories and resulting patterns of genetic variation in samples of DNA sequences from natural populations. However, using the model as the basis for inference is currently severely restricted by the computational challenge of estimating the likelihood. We discuss why the coalescent with recombination is so challenging to work with and explore whether simpler models, under which inference is more tractable, may prove useful for genealogy-based inference. We introduce a simplification of the coalescent process in which coalescence between lineages with no overlapping ancestral material is banned. The resulting process has a simple Markovian structure when generating genealogies sequentially along a sequence, yet has very similar properties to the full model, both in terms of describing patterns of genetic variation and as the basis for statistical inference.


Assuntos
Cromossomos/genética , Evolução Molecular , Variação Genética , Modelos Genéticos , Recombinação Genética/genética , Simulação por Computador , Funções Verossimilhança , Desequilíbrio de Ligação , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa