Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(4): 1690-1702, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34873793

RESUMO

Major drivers of gains or losses in soil organic carbon (SOC) include land management, land-use change, and climate change. Thousands of original studies have focused on these drivers of SOC change and are now compiled in a growing number of meta-analyses. To critically assess the research efforts in this domain, we retrieved and characterized 192 meta-analyses of SOC stocks or concentrations. These meta-analyses comprise more than 13,200 original studies conducted from 1910 to 2020 in 150 countries. First, we show that, despite a growing number of studies over time, the geographical coverage of studies is limited. For example, the effect of land management, land-use change, and climate change on SOC has been only occasionally studied in North and Central Africa, and in the Middle East and Central Asia. Second, the meta-analyses investigated a limited number of land management practices, mostly mineral fertilization, organic amendments, and tillage. Third, the meta-analyses demonstrated relatively low quality and transparency. Lastly, we discuss the mismatch between the increasing number of studies and the need for more local, reusable, and diversified knowledge on how to preserve high SOC stocks or restore depleted SOC stocks.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Sequestro de Carbono , Mudança Climática , Conservação dos Recursos Naturais
2.
Glob Chang Biol ; 27(2): 237-256, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894815

RESUMO

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2 O), a powerful greenhouse gas, and increasing SOC may influence N2 O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2 O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta-analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2 O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease N2 O emissions.


Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Carbono/análise , Óxido Nitroso/análise , Paris
5.
Nat Commun ; 14(1): 3700, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349294

RESUMO

Anthropogenic activities profoundly impact soil organic carbon (SOC), affecting its contribution to ecosystem services such as climate regulation. Here, we conducted a thorough review of the impacts of land-use change, land management, and climate change on SOC. Using second-order meta-analysis, we synthesized findings from 230 first-order meta-analyses comprising over 25,000 primary studies. We show that (i) land conversion for crop production leads to high SOC loss, that can be partially restored through land management practices, particularly by introducing trees and incorporating exogenous carbon in the form of biochar or organic amendments, (ii) land management practices that are implemented in forests generally result in depletion of SOC, and (iii) indirect effects of climate change, such as through wildfires, have a greater impact on SOC than direct climate change effects (e.g., from rising temperatures). The findings of our study provide strong evidence to assist decision-makers in safeguarding SOC stocks and promoting land management practices for SOC restoration. Furthermore, they serve as a crucial research roadmap, identifying areas that require attention to fill the knowledge gaps concerning the factors driving changes in SOC.


Assuntos
Ecossistema , Solo , Carbono , Florestas , Produção Agrícola , Sequestro de Carbono , Agricultura
6.
Sci Data ; 9(1): 228, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610235

RESUMO

Increasing soil organic carbon (SOC) in natural and cultivated ecosystems is proposed as a natural climate solution to limit global warming. SOC dynamics is driven by numerous factors such as  land-use change, land management and climate change. The amount of additional carbon potentially stored in the soil is the subject of much debate in the scientific community. We present a global database compiling the results of 217 meta-analyses analyzing the effects of land management, land-use change and climate change on SOC. We report a total of 15,857 effect sizes, 6,550 directly related to soil carbon, and 9,307 related to other associated soil or plant variables. The database further synthesizes results of 13,632 unique primary studies across more than 150 countries that were used in the meta-analyses. Meta-analyses and their effect sizes and were classified by type of intervention and land use, outcomes, country and region. This database helps to understand the drivers of SOC sequestration, the associated co-benefits and potential drawbacks, and is a useful tool to guide future global climate change policies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa