Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 187(3): 631-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659252

RESUMO

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Clima Tropical , Adaptação Fisiológica , Biomassa , Brasil , Ecossistema , Modelos Biológicos , Caules de Planta/crescimento & desenvolvimento , Chuva , Estresse Fisiológico , Fatores de Tempo , Água , Madeira/crescimento & desenvolvimento
2.
Nat Commun ; 11(1): 5515, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168823

RESUMO

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.


Assuntos
Ecologia , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Brasil , Dióxido de Carbono , Sequestro de Carbono , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Modelos de Riscos Proporcionais , Fatores de Risco , Clima Tropical
4.
Science ; 323(5919): 1344-7, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19265020

RESUMO

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Assuntos
Biomassa , Secas , Ecossistema , Árvores , Atmosfera , Brasil , Carbono , Dióxido de Carbono , Clima , América do Sul , Árvores/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa