RESUMO
OBJECTIVE: To define a reference chart comparing pressure drop vs. flow generated by a set of arterial cannulae currently utilized in cardiopulmonary bypass conditions in pediatric surgery. METHODS: Cannulae from two manufacturers were selected considering their design and outer and inner diameters. Cannula performance was evaluated in terms of pressure drop vs. flow during simulated cardiopulmonary bypass conditions. The experimental circuits consisted of a Jostra HL-20 roller pump, a Quadrox-i pediatric oxygenator (Maquet Cardiopulmonary AG, Rastatt, Germany), and a custom pediatric tubing set. The circuit was primed with lactated Ringer's solution only (first condition) and with human packed red blood cells added (second condition) to achieve a hematocrit of 30%. Cannula sizes 8 to 16 Fr were inserted into the cardiopulmonary bypass circuit with a "Y" connector. The flow was adjusted in 100 ml/min increments within typical flow ranges for each cannula. Pre-cannula and post-cannula pressures were measured to calculate the pressure drop. RESULTS: Utilizing a pressure drop limit of 100 mmHg, our results suggest a recommended flow limit of 500, 900, 1400, 2600, and 3100 mL/min for Braile arterial cannulae sizes 8, 10, 12, 14, and 16 Fr, respectively. For Medtronic DLP arterial cannulae sizes 8, 10, 12, 14, and 16 Fr, the recommended flow limit is 600, 1100, 1700, 2700, and 3300 mL/min, respectively. CONCLUSION: This study reinforces discrepancies in pressure drop between cannulae of the same diameter supplied by different manufacturers and the importance of independent translational research to evaluate components' performance.
Assuntos
Cânula , Ponte Cardiopulmonar , Criança , Humanos , Hemodinâmica , Modelos Cardiovasculares , Desenho de EquipamentoRESUMO
OBJECTIVE: To analyze the impact of vacuum-assisted venous drainage (VAVD) on arterial pump flow in a simulated pediatric cardiopulmonary bypass circuit utilizing a centrifugal pump (CP) with an external arterial filter. METHODS: The simulation circuit consisted of a Quadrox-I Pediatric oxygenator, a Rotaflow CP (Maquet Cardiopulmonary AG, Rastatt, Germany), and a custom pediatric tubing set primed with Lactated Ringer's solution and packed red blood cells. Venous line pressure, reservoir pressure, and arterial flow were measured with VAVD turned off to record baseline values. Four other conditions were tested with progressively higher vacuum pressures (-20, -40, -60, and -80 mmHg) applied to the baseline cardiotomy pressure. An arterial filter was placed into the circuit and arterial flow was measured with the purge line in both open and closed positions. These trials were repeated at set arterial flow rates of 1500, 2000, and 2500 mL/min. RESULTS: The use of progressively higher vacuum caused a reduction in effective arterial flow from 1490±0.00 to 590±0.00, from 2020±0.01 to 1220±0.00, and from 2490±0.0 to 1830±0.01 mL/min. Effective forward flow decreased with increased levels of VAVD. CONCLUSION: The use of VAVD reduces arterial flow when a CP is used as the main arterial pump. The reduction in the forward arterial flow increases as the vacuum level increases. The loss of forward flow is further reduced when the arterial filter purge line is kept in the recommended open position.An independent flow probe is essential to monitor pump flow during cardiopulmonary bypass.
Assuntos
Ponte Cardiopulmonar , Criança , Drenagem , Desenho de Equipamento , Hemodinâmica , Humanos , Modelos CardiovascularesRESUMO
ABSTRACT Objective: To define a reference chart comparing pressure drop vs. flow generated by a set of arterial cannulae currently utilized in cardiopulmonary bypass conditions in pediatric surgery. Methods: Cannulae from two manufacturers were selected considering their design and outer and inner diameters. Cannula performance was evaluated in terms of pressure drop vs. flow during simulated cardiopulmonary bypass conditions. The experimental circuits consisted of a Jostra HL-20 roller pump, a Quadrox-i pediatric oxygenator (Maquet Cardiopulmonary AG, Rastatt, Germany), and a custom pediatric tubing set. The circuit was primed with lactated Ringer's solution only (first condition) and with human packed red blood cells added (second condition) to achieve a hematocrit of 30%. Cannula sizes 8 to 16 Fr were inserted into the cardiopulmonary bypass circuit with a "Y" connector. The flow was adjusted in 100 ml/min increments within typical flow ranges for each cannula. Pre-cannula and post-cannula pressures were measured to calculate the pressure drop. Results: Utilizing a pressure drop limit of 100 mmHg, our results suggest a recommended flow limit of 500, 900, 1400, 2600, and 3100 mL/min for Braile arterial cannulae sizes 8, 10, 12, 14, and 16 Fr, respectively. For Medtronic DLP arterial cannulae sizes 8, 10, 12, 14, and 16 Fr, the recommended flow limit is 600, 1100, 1700, 2700, and 3300 mL/min, respectively. Conclusion: This study reinforces discrepancies in pressure drop between cannulae of the same diameter supplied by different manufacturers and the importance of independent translational research to evaluate components' performance.
RESUMO
Abstract Objective: To analyze the impact of vacuum-assisted venous drainage (VAVD) on arterial pump flow in a simulated pediatric cardiopulmonary bypass circuit utilizing a centrifugal pump (CP) with an external arterial filter. Methods: The simulation circuit consisted of a Quadrox-I Pediatric oxygenator, a Rotaflow CP (Maquet Cardiopulmonary AG, Rastatt, Germany), and a custom pediatric tubing set primed with Lactated Ringer's solution and packed red blood cells. Venous line pressure, reservoir pressure, and arterial flow were measured with VAVD turned off to record baseline values. Four other conditions were tested with progressively higher vacuum pressures (-20, -40, -60, and -80 mmHg) applied to the baseline cardiotomy pressure. An arterial filter was placed into the circuit and arterial flow was measured with the purge line in both open and closed positions. These trials were repeated at set arterial flow rates of 1500, 2000, and 2500 mL/min. Results: The use of progressively higher vacuum caused a reduction in effective arterial flow from 1490±0.00 to 590±0.00, from 2020±0.01 to 1220±0.00, and from 2490±0.0 to 1830±0.01 mL/min. Effective forward flow decreased with increased levels of VAVD. Conclusion: The use of VAVD reduces arterial flow when a CP is used as the main arterial pump. The reduction in the forward arterial flow increases as the vacuum level increases. The loss of forward flow is further reduced when the arterial filter purge line is kept in the recommended open position. An independent flow probe is essential to monitor pump flow during cardiopulmonary bypass.