Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102888, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634849

RESUMO

In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.


Assuntos
Biotina , Neurônios , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Biotina/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo
2.
J Virol ; 97(2): e0167222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651748

RESUMO

Phenotypic screening has yielded small-molecule inhibitors of prion replication that are effective in vivo against certain prion strains but not others. Here, we sought to test the small molecule anle138b in multiple mouse models of prion disease. In mice inoculated with the RML strain of prions, anle138b doubled survival and durably suppressed astrogliosis measured by live-animal bioluminescence imaging. In knock-in mouse models of the D178N and E200K mutations that cause genetic prion disease, however, we were unable to identify a clear, quantifiable disease endpoint against which to measure therapeutic efficacy. Among untreated animals, the mutations did not impact overall survival, and bioluminescence remained low out to >20 months of age. Vacuolization and PrP deposition were observed in some brain regions in a subset of mutant animals but appeared to be unable to carry the weight of a primary endpoint in a therapeutic study. We conclude that not all animal models of prion disease are suited to well-powered therapeutic efficacy studies, and care should be taken in choosing the models that will support drug development programs. IMPORTANCE There is an urgent need to develop drugs for prion disease, a currently untreatable neurodegenerative disease. In this effort, there is a debate over which animal models can best support a drug development program. While the study of prion disease benefits from excellent animal models because prions naturally afflict many different mammals, different models have different capabilities and limitations. Here, we conducted a therapeutic efficacy study of the drug candidate anle138b in mouse models with two of the most common mutations that cause genetic prion disease. In a more typical model where prions are injected directly into the brain, we found anle138b to be effective. In the genetic models, however, the animals never reached a clear, measurable point of disease onset. We conclude that not all prion disease animal models are ideally suited to drug efficacy studies, and well-defined, quantitative disease metrics should be a priority.


Assuntos
Doenças Priônicas , Pirazóis , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Príons/genética , Pirazóis/uso terapêutico
3.
Acta Neuropathol ; 148(1): 25, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160375

RESUMO

Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.


Assuntos
Encéfalo , Ratos Transgênicos , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Ratos , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Príons/metabolismo , Príons/genética , Tauopatias/patologia , Tauopatias/metabolismo , Tauopatias/genética , Degeneração Neural/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Mutação
4.
Nucleic Acids Res ; 48(19): 10615-10631, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32776089

RESUMO

Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.


Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Doenças Priônicas/terapia , Proteínas Priônicas/genética , Terapêutica com RNAi/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/química , Proteínas Priônicas/metabolismo
5.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064393

RESUMO

Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aß peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Proteínas Priônicas/genética , Scrapie/genética , alfa-Sinucleína/genética , Proteínas tau/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Síndrome de Creutzfeldt-Jakob/etiologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Demência Frontotemporal/etiologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Expressão Gênica , Doença de Gerstmann-Straussler-Scheinker/etiologia , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Camundongos , Mutação , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Príons , Dobramento de Proteína , Scrapie/etiologia , Scrapie/metabolismo , Scrapie/patologia , Ovinos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(51): E11029-E11036, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203673

RESUMO

Misfolding of tau proteins into prions and their propagation along neural circuits are thought to result in neurodegeneration causing Alzheimer's disease, progressive supranuclear palsy, chronic traumatic encephalopathy, and other tauopathies. Little is known about the molecular processes mediating tau prion replication and spreading in different brain regions. Using transgenic (Tg) mice with a neuronal promoter driving expression of human mutant (P301S) tau, we found that tau prion formation and histopathologic deposition is largely restricted to the hindbrain. Unexpectedly, tau mRNA and protein levels did not differ between the forebrain and hindbrain, suggesting that other factors modulating the conversion of tau into a prion exist and are region specific. Using a cell-based prion propagation assay, we discovered that tau prion replication is suppressed by forebrain-derived inhibitors, one of which is sortilin, a lysosomal sorting receptor. We also show that sortilin expression is higher in the forebrain than the hindbrain across the life span of the Tg mice, suggesting that sortilin, at least in part, inhibits forebrain tau prion replication in vivo. Our findings provide evidence for selective vulnerability in mice resulting in highly regulated levels of tau prion propagation, thus affording a model for identification of additional molecules that could mitigate the levels of tau prions in human tauopathies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Rombencéfalo/metabolismo , Rombencéfalo/patologia
7.
EMBO J ; 34(24): 3028-41, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26538322

RESUMO

In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau-overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas tau/genética , Animais , Células Cultivadas , Córtex Entorrinal/citologia , Córtex Entorrinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Neurônios/metabolismo , Proteínas tau/deficiência , Proteínas tau/metabolismo
8.
Brain ; 141(7): 2194-2212, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733334

RESUMO

Several studies have now supported the use of a tau lowering agent as a possible therapy in the treatment of tauopathy disorders, including Alzheimer's disease. In human Alzheimer's disease, however, concurrent amyloid-ß deposition appears to synergize and accelerate tau pathological changes. Thus far, tau reduction strategies that have been tested in vivo have been examined in the setting of tau pathology without confounding amyloid-ß deposition. To determine whether reducing total human tau expression in a transgenic model where there is concurrent amyloid-ß plaque formation can still reduce tau pathology and protect against neuronal loss, we have taken advantage of the regulatable tau transgene in APP/PS1 × rTg4510 mice. These mice develop both neurofibrillary tangles as well as amyloid-ß plaques throughout the cortex and hippocampus. By suppressing human tau expression for 6 months in the APP/PS1 × rTg4510 mice using doxycycline, AT8 tau pathology, bioactivity, and astrogliosis were reduced, though importantly to a lesser extent than lowering tau in the rTg4510 alone mice. Based on non-denaturing gels and proteinase K digestions, the remaining tau aggregates in the presence of amyloid-ß exhibit a longer-lived aggregate conformation. Nonetheless, lowering the expression of the human tau transgene was sufficient to equally ameliorate thioflavin-S positive tangles and prevent neuronal loss equally well in both the APP/PS1 × rTg4510 mice and the rTg4510 cohort. Together, these results suggest that, although amyloid-ß stabilizes tau aggregates, lowering total tau levels is still an effective strategy for the treatment of tau pathology and neuronal loss even in the presence of amyloid-ß deposition.


Assuntos
Placa Amiloide/patologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Fosforilação , Placa Amiloide/metabolismo , Presenilina-1/metabolismo
9.
Am J Pathol ; 187(7): 1601-1612, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500862

RESUMO

Amyloid plaques and neurofibrillary tangles co-occur in Alzheimer disease, but with different topological and temporal patterns. Whether these two lesions are independent or pathobiologically related is uncertain. For example, amyloid deposition in the neocortex precedes the spread of tau neurofibrillary tangles from the limbic areas to the cortex. We examined the aggregation properties of tau isolated from human cases with early tau pathology (Braak II) with and without plaques. Using a well-established HEK cell biosensor assay, we show that tau from cases with plaques has an enhanced ability to induce tau aggregates compared to tau from cases without plaques. To further explore this effect, we combined mice carrying the APP/PS1 transgene array that develop plaques with rTg4510 mice carrying the P301L mutant human tau transgene that develop extensive tau pathology with age. The resulting APP/PS1-rTg4510 mice had a threefold increase in tau seeding activity over the rTg4510 strain, without change in tau production or extracellular release. Surprisingly, this effect was observed before overt amyloid deposition. The enhancement of tau aggregation was also apparent by an increase in histological measures of tau pathology in young APP/PS1-rTg4510 mice and an increase in high-molecular-weight tau. Overall, these data provide evidence that amyloid ß acts to enhance tau pathology by increasing the formation of tau species capable of seeding new aggregates.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neocórtex/metabolismo , Neocórtex/patologia , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Placa Amiloide/metabolismo , Agregação Patológica de Proteínas , Proteínas tau/genética
10.
Am J Pathol ; 187(6): 1399-1412, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28408124

RESUMO

The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Epitopos/imunologia , Feminino , Humanos , Interneurônios/metabolismo , Masculino , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas , Terapia de Alvo Molecular/métodos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Proteínas tau/antagonistas & inibidores , Proteínas tau/imunologia
11.
Ann Neurol ; 80(3): 355-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27351289

RESUMO

OBJECTIVE: Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or, in fact, a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in the postmortem AD brain and can be taken up by neurons and seed aggregates. METHODS: We have examined seeding and uptake properties of brain extracellular tau from various sources, including interstitial fluid (ISF) and CSF from an AD transgenic mouse model and postmortem ventricular and antemortem lumbar CSF from AD patients. RESULTS: We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients, and its levels were significantly elevated compared to control subjects. HMW tau derived from CSF of AD patients was seed competent in vitro. INTERPRETATION: These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species, giving new insights into the role of CSF tau and biomarker development for AD. Ann Neurol 2016;80:355-367.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Encéfalo/metabolismo , Proteínas tau/líquido cefalorraquidiano , Idoso , Animais , Biomarcadores/líquido cefalorraquidiano , Líquido Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
12.
Eur J Neurosci ; 44(12): 3056-3066, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27748574

RESUMO

Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aß) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aß. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aß and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aß-plaques and synapse loss, with rTg21221 mice, which overexpress wild-type human tau. When compared to the APP/PS1 mice without human tau, the cross-sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque-associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aß at synapses. Together, these results indicate that adding human wild-type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque-associated synapse loss.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Placa Amiloide/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/genética
13.
Nature ; 464(7292): 1201-4, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20357768

RESUMO

Studies of post-mortem tissue have shown that the location of fibrillar tau deposits, called neurofibrillary tangles (NFT), matches closely with regions of massive neuronal death, severe cytological abnormalities, and markers of caspase activation and apoptosis, leading to the idea that tangles cause neurodegeneration in Alzheimer's disease and tau-related frontotemporal dementia. However, using in vivo multiphoton imaging to observe tangles and activation of executioner caspases in living tau transgenic mice (Tg4510 strain), we find the opposite: caspase activation occurs first, and precedes tangle formation by hours to days. New tangles form within a day. After a new tangle forms, the neuron remains alive and caspase activity seems to be suppressed. Similarly, introduction of wild-type 4-repeat tau (tau-4R) into wild-type animals triggered caspase activation, tau truncation and tau aggregation. Adeno-associated virus-mediated expression of a construct mimicking caspase-cleaved tau into wild-type mice led to the appearance of intracellular aggregates, tangle-related conformational- and phospho-epitopes, and the recruitment of full-length endogenous tau to the aggregates. On the basis of these data, we propose a new model in which caspase activation cleaves tau to initiate tangle formation, then truncated tau recruits normal tau to misfold and form tangles. Because tangle-bearing neurons are long-lived, we suggest that tangles are 'off pathway' to acute neuronal death. Soluble tau species, rather than fibrillar tau, may be the critical toxic moiety underlying neurodegeneration.


Assuntos
Caspases/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular , Ativação Enzimática , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/enzimologia , Emaranhados Neurofibrilares/patologia , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional , Solubilidade , Fatores de Tempo , Proteínas tau/química , Proteínas tau/genética
14.
Proc Natl Acad Sci U S A ; 110(46): 18698-703, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24173031

RESUMO

Familial dysautonomia (FD) is a devastating developmental and progressive peripheral neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). To identify the cellular and molecular mechanisms that cause FD, we generated mice in which Ikbkap expression is ablated in the peripheral nervous system and identify the steps in peripheral nervous system development that are Ikbkap-dependent. We show that Ikbkap is not required for trunk neural crest migration or pathfinding, nor for the formation of dorsal root or sympathetic ganglia, or the adrenal medulla. Instead, Ikbkap is essential for the second wave of neurogenesis during which the majority of tropomyosin-related kinase A (TrkA(+)) nociceptors and thermoreceptors arise. In its absence, approximately half the normal complement of TrkA(+) neurons are lost, which we show is partly due to p53-mediated premature differentiation and death of mitotically-active progenitors that express the paired-box gene Pax3 and give rise to the majority of TrkA(+) neurons. By the end of sensory development, the number of TrkC neurons is significantly increased, which may result from an increase in Runx3(+) cells. Furthermore, our data demonstrate that TrkA(+) (but not TrkC(+)) sensory and sympathetic neurons undergo exacerbated Caspase 3-mediated programmed cell death in the absence of Ikbkap and that this death is not due to a reduction in nerve growth factor synthesis. In summary, these data suggest that FD does not result from a failure in trunk neural crest migration, but rather from a critical function for Ikbkap in TrkA progenitors and TrkA(+) neurons.


Assuntos
Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Disautonomia Familiar/fisiopatologia , Crista Neural/metabolismo , Animais , Apoptose/genética , Proteínas de Transporte/genética , Linhagem da Célula/fisiologia , Primers do DNA/genética , Ossos Faciais/patologia , Deleção de Genes , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutagênese , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/metabolismo , Sistema Nervoso Periférico/fisiopatologia
15.
Proc Natl Acad Sci U S A ; 110(8): 3089-94, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382216

RESUMO

Deposition of amyloid-ß (Aß) in cerebral arteries, known as cerebral amyloid angiopathy (CAA), occurs both in the setting of Alzheimer's disease and independent of it, and can cause cerebrovascular insufficiency and cognitive deficits. The mechanisms leading to CAA have not been established, and no therapeutic targets have been identified. We investigated the role of CD36, an innate immunity receptor involved in Aß trafficking, in the neurovascular dysfunction, cognitive deficits, and amyloid accumulation that occurs in mice expressing the Swedish mutation of the amyloid precursor protein (Tg2576). We found that Tg2576 mice lacking CD36 have a selective reduction in Aß1-40 and CAA. This reduced vascular amyloid deposition was associated with preservation of the Aß vascular clearance receptor LRP-1, and protection from the deleterious effects of Aß on cerebral arterioles. These beneficial vascular effects were reflected by marked improvements in neurovascular regulation and cognitive performance. Our data suggest that CD36 promotes vascular amyloid deposition and the resulting cerebrovascular damage, leading to neurovascular dysfunction and cognitive deficits. These findings identify a previously unrecognized role of CD36 in the mechanisms of vascular amyloid deposition, and suggest that this scavenger receptor is a putative therapeutic target for CAA and related conditions.


Assuntos
Antígenos CD36/imunologia , Angiopatia Amiloide Cerebral/imunologia , Imunidade Inata , Animais , Vasos Sanguíneos/metabolismo , Antígenos CD36/genética , Circulação Cerebrovascular , Imunofluorescência , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Pericitos/imunologia , Proteína da Zônula de Oclusão-1/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(23): 9035-40, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22619325

RESUMO

The Sprn gene encodes Shadoo (Sho), a glycoprotein with biochemical properties similar to the unstructured region of cellular prion protein (PrP(C)). Sho has been considered a candidate for the hypothetical π protein that supplies a PrP(C)-like function to maintain the viability of Prnp(0/0) mice lacking the PrP(C) protein. To understand these relationships more clearly we probed the cell biology of Sho and created knockout mice. Besides full-length and a "C1" C-terminal fragment, we describe a 6-kDa N-terminal Sho neuropeptide, "N1," which is present in membrane-enriched subcellular fractions of wild-type mice. Sprn null alleles were produced that delete all protein coding sequences yet spare the Mtg1 gene transcription unit that overlaps the Sprn 3' UTR; the resulting mice bred to homozygosity were viable and fertile, although Sprn(0/0) mice maintained in two genetic backgrounds weighed less than wild-type mice. Lack of Sho protein did not affect prion incubation time. Contrasting with lethality reported for knockdown of expression in Prnp(0/0) embryos using lentiviruses targeted against the Sprn 3' UTR, we established that double-knockout mice deficient in both Sho and PrP(C) are fertile and viable up to 690 d of age. Our data reduce the impetus for equating Sho with the notional π protein and are not readily reconciled with hypotheses wherein expression of PrP(C) and Sho are both required for completion of embryogenesis. Alternatively, and in accord with some reports for PrP(C), we infer that Sho's activity will prove germane to the maintenance of neuronal viability in postnatal life.


Assuntos
Desenvolvimento Embrionário/genética , Viabilidade Fetal/genética , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/metabolismo , Proteínas PrPC/genética , Análise de Variância , Animais , Western Blotting , Peso Corporal/genética , Fracionamento Celular , Sobrevivência Celular/genética , Cruzamentos Genéticos , Proteínas Ligadas por GPI , Vetores Genéticos/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Neurônios/fisiologia , Neuropeptídeos/genética
17.
J Neurosci ; 33(33): 13300-11, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946388

RESUMO

Neurofibrillary tangles (NFTs), a marker of neuronal alterations in Alzheimer's disease (AD) and other tauopathies, are comprised of aggregates of hyperphosphorylated tau protein. We recently studied the formation of NFTs in the entorhinal cortex (EC) and their subsequent propagation through neural circuits in the rTgTauEC mouse model (de Calignon et al., 2012). We now examine the consequences of suppressing transgene expression with doxycycline on the NFT-associated pathological features of neuronal system deafferentation, NFT progression and propagation, and neuronal loss. At 21 months of age we observe that EC axonal lesions are associated with an abnormal sprouting response of acetylcholinesterase (AChE)-positive fibers, a phenotype reminiscent of human AD. At 24 months, NFTs progress, tau inclusions propagate to the dentate gyrus, and neuronal loss is evident. Suppression of the transgene expression from 18 to 24 months led to reversal of AChE sprouting, resolution of Gallyas-positive and Alz50-positive NFTs, and abrogation of progressive neuronal loss. These data suggest that propagation of NFTs, as well as some of the neural system consequences of NFTs, can be reversed in an animal model of NFT-associated toxicity, providing proof in principle that these lesions can be halted, even in established disease.


Assuntos
Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Acetilcolinesterase , Doença de Alzheimer/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Córtex Entorrinal/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Proteínas tau/genética
18.
Acta Neuropathol ; 127(2): 257-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271788

RESUMO

Neurofibrillary tangles (NFTs), a hallmark of Alzheimer's disease, are intracellular silver and thioflavin S-staining aggregates that emerge from earlier accumulation of phospho-tau in the soma. Whether soluble misfolded but nonfibrillar tau disrupts neuronal function is unclear. Here we investigate if soluble pathological tau, specifically directed to the entorhinal cortex (EC), can cause behavioral or synaptic deficits. We studied rTgTauEC transgenic mice, in which P301L mutant human tau overexpressed primarily in the EC leads to the development of tau pathology, but only rare NFT at 16 months of age. We show that the early tau lesions are associated with nearly normal performance in contextual fear conditioning, a hippocampal-related behavior task, but more robust changes in neuronal system activation as marked by Arc induction and clear electrophysiological defects in perforant pathway synaptic plasticity. Electrophysiological changes were likely due to a presynaptic deficit and changes in probability of neurotransmitter release. The data presented here support the hypothesis that misfolded and hyperphosphorylated tau can impair neuronal function within the entorhinal-hippocampal network, even prior to frank NFT formation and overt neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Córtex Entorrinal/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteínas tau/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/fisiologia , Córtex Entorrinal/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia
19.
Proc Natl Acad Sci U S A ; 108(12): 5063-8, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383152

RESUMO

Increasing evidence indicates that cerebrovascular dysfunction plays a pathogenic role in Alzheimer's dementia (AD). Amyloid-ß (Aß), a peptide central to the pathogenesis of AD, has profound vascular effects mediated, for the most part, by reactive oxygen species produced by the enzyme NADPH oxidase. The mechanisms linking Aß to NADPH oxidase-dependent vascular oxidative stress have not been identified, however. We report that the scavenger receptor CD36, a membrane glycoprotein that binds Aß, is essential for the vascular oxidative stress and neurovascular dysfunction induced by Aß1-40. Thus, topical application of Aß1-40 onto the somatosensory cortex attenuates the increase in cerebral blood flow elicited by neural activity or by endothelium-dependent vasodilators in WT mice but not in CD36-null mice (CD36(0/0)). The cerebrovascular effects of infusion of Aß1-40 into cerebral arteries are not observed in mice pretreated with CD36 blocking antibodies or in CD36(0/0) mice. Furthermore, CD36 deficiency prevents the neurovascular dysfunction observed in transgenic mice overexpressing the Swedish mutation of the amyloid precursor protein Tg2576 despite elevated levels of brain Aß1-40. CD36 is also required for the vascular oxidative stress induced by exogenous Aß1-40 or observed in Tg2576 mice. These observations establish CD36 as a key link between Aß1-40 and the NADPH oxidase-dependent vascular oxidative stress underlying the neurovascular dysfunction and suggest that CD36 is a potential therapeutical target to counteract the cerebrovascular dysfunction associated with Aß.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antígenos CD36/metabolismo , Transtornos Cerebrovasculares/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Anticorpos Neutralizantes/farmacologia , Antígenos CD36/genética , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/genética , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fragmentos de Peptídeos/genética , Ligação Proteica , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiopatologia
20.
PLoS Pathog ; 7(11): e1002391, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22114562

RESUMO

During prion infections of the central nervous system (CNS) the cellular prion protein, PrP(C), is templated to a conformationally distinct form, PrP(Sc). Recent studies have demonstrated that the Sprn gene encodes a GPI-linked glycoprotein Shadoo (Sho), which localizes to a similar membrane environment as PrP(C) and is reduced in the brains of rodents with terminal prion disease. Here, analyses of prion-infected mice revealed that down-regulation of Sho protein was not related to Sprn mRNA abundance at any stage in prion infection. Down-regulation was robust upon propagation of a variety of prion strains in Prnp(a) and Prnp(b) mice, with the exception of the mouse-adapted BSE strain 301 V. In addition, Sho encoded by a TgSprn transgene was down-regulated to the same extent as endogenous Sho. Reduced Sho levels were not seen in a tauopathy, in chemically induced spongiform degeneration or in transgenic mice expressing the extracellular ADan amyloid peptide of familial Danish dementia. Insofar as prion-infected Prnp hemizygous mice exhibited accumulation of PrP(Sc) and down-regulation of Sho hundreds of days prior to onset of neurologic symptoms, Sho depletion can be excluded as an important trigger for clinical disease or as a simple consequence of neuronal damage. These studies instead define a disease-specific effect, and we hypothesize that membrane-associated Sho comprises a bystander substrate for processes degrading PrP(Sc). Thus, while protease-resistant PrP detected by in vitro digestion allows post mortem diagnosis, decreased levels of endogenous Sho may trace an early response to PrP(Sc) accumulation that operates in the CNS in vivo. This cellular response may offer new insights into the homeostatic mechanisms involved in detection and clearance of the misfolded proteins that drive prion disease pathogenesis.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas PrPSc/biossíntese , Doenças Priônicas/metabolismo , Animais , Regulação para Baixo , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas PrPC/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa