Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Immunology ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922694

RESUMO

Tuberculosis (TB) alone caused over a billion deaths in the last 200 years, making it one of the deadliest diseases to humankind. Understanding the immune mechanisms underlying protection or pathology in TB is key to uncover the much needed innovative approaches to tackle TB. The scavenger receptor cysteine-rich molecule CD5 antigen-like (CD5L) has been associated with TB, but whether and how CD5L shapes the immune response during the course of disease remains poorly understood. Here, we show an upregulation of CD5L in circulation and at the site of infection in C57BL/6 Mycobacterium tuberculosis-infected mice. To investigate the role of CD5L in TB, we studied the progression of M. tuberculosis aerosol infection in a recently described genetically engineered mouse model lacking CD5L. Despite the increase of CD5L during infection of wild-type mice, absence of CD5L did not impact bacterial burden, histopathology or survival of infected mice. Absence of CD5L associated with a modest increase in the numbers of CD4+ T cells and the expression of IFN-γ in the lungs of infected mice, with no major effect in overall immune cell dynamics. Collectively, this study confirms CD5L as a potential diagnostic biomarker to TB, showing no discernible impact on the outcome of the infection.

2.
Cell Commun Signal ; 22(1): 286, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790044

RESUMO

BACKGROUND: T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS: We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS: Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS: Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Transdução de Sinais , Linfócitos T , Humanos , Células Jurkat , Antígenos CD/metabolismo , Antígenos CD/genética , Linfócitos T/metabolismo , Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Ligantes , Ativação Linfocitária , Ligação Proteica , Adesão Celular
3.
Cell Commun Signal ; 20(1): 184, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414966

RESUMO

BACKGROUND: CD6 is one of many cell surface receptors known to regulate signal transduction upon T cell activation. However, whether CD6 mediates costimulatory or inhibitory signals is controversial. When T cells engage with antigen presenting cells (APCs), CD6 interacts with its ligand CD166 at the cell-cell interface while the cytosolic tail assembles a complex signalosome composed of adaptors and effector enzymes, that may either trigger activating signaling cascades, or instead modulate the intensity of signaling. Except for a few cytosolic adaptors that connect different components of the CD6 signalosome, very little is known about the mechanistic effects of the cytosolic effectors that bind CD6. METHODS: Jurkat model T cells were transfected to express wild-type (WT) CD6, or a cytoplasmic truncation, signaling-disabled mutant, CD6Δcyt. The two resulting cell lines were directly activated by superantigen (sAg)-loaded Raji cells, used as APCs, to assess the net signaling function of CD6. The Jurkat cell lines were further adapted to express a FRET-based unimolecular HRas biosensor that reported the activity of this crucial GTPase at the immunological synapse. RESULTS: We show that deletion of the cytosolic tail of CD6 enhances T-cell responses, indicating that CD6 restrains T-cell activation. One component of the CD6-associated inhibitory apparatus was found to be the GTPase activating protein of Ras (RasGAP), that we show to associate with CD6 in a phosphorylation-dependent manner. The FRET HRas biosensor that we developed was demonstrated to be functional and reporting the activation of the T cell lines. This allowed to determine that the presence of the cytosolic tail of CD6 results in the down-regulation of HRas activity at the immunological synapse, implicating this fundamental GTPase as one of the targets inhibited by CD6. CONCLUSIONS: This study provides the first description of a mechanistic sequence of events underlying the CD6-mediated inhibition of T-cell activation, involving the modulation of the MAPK pathway at several steps, starting with the coupling of RasGAP to the CD6 signalosome, the repression of the activity of Ras, and culminating in the reduction of ERK1/2 phosphorylation and of the expression of the T-cell activation markers CD69 and IL-2R α chain. Video abstract.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Humanos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD/metabolismo , Ativação Linfocitária , Células Jurkat , GTP Fosfo-Hidrolases
5.
Immunology ; 157(4): 296-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162836

RESUMO

The characterization of the architecture, structure and extracellular interactions of the CD6 glycoprotein, a transmembrane receptor expressed in medullary thymocytes and all mature T-cell populations, has been enhanced by the existence of monoclonal antibodies (mAbs) that specifically recognize the various scavenger receptor cysteine-rich (SRCR) domains of the ectodomain. Using engineered isoforms of CD6 including or excluding each of the three SRCR domains, either expressed at the membranes of cells or in soluble forms, we provide conclusive and definitive evidence that domain 2 of CD6, previously not identifiable, can be recognized by the CD6 mAbs OX125 and OX126, and that OX124 targets domain 3 and can block the interaction at the cell surface of CD6 with its major ligand CD166. Alternative splicing-dependent CD6 isoforms can now be confidently identified. We confirm that following T-cell activation there is a partial replacement of full-length CD6 by the CD6Δd3 isoform, which lacks the CD166-binding domain, and we find no evidence for the expression of other CD6 isoforms at the mRNA or protein levels.


Assuntos
Processamento Alternativo/imunologia , Anticorpos Monoclonais Murinos/química , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Anticorpos Monoclonais Murinos/imunologia , Humanos , Células Jurkat , Domínios Proteicos , Isoformas de Proteínas/imunologia , Linfócitos T/citologia
6.
Biochim Biophys Acta ; 1858(2): 163-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26589183

RESUMO

Efficient liposome disruption inside the cells is a key for success with any type of drug delivery system. The efficacy of drug delivery is currently evaluated by direct visualization of labeled liposomes internalized by cells, not addressing objectively the release and distribution of the drug. Here, we propose a novel method to easily assess liposome disruption and drug release into the cytoplasm. We propose the encapsulation of the cationic dye Hoechst 34580 to detect an increase in blue fluorescence due to its specific binding to negatively charged DNA. For that, the dye needs to be released inside the cell and translocated to the nucleus. The present approach correlates the intensity of detected fluorescent dye with liposome disruption and consequently assesses drug delivery within the cells.


Assuntos
Benzimidazóis , Citoplasma/metabolismo , DNA/metabolismo , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Células CACO-2 , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia
7.
Eur J Immunol ; 46(6): 1490-503, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27005442

RESUMO

T lymphocytes stimulated through their antigen receptor (TCR) preferentially express mRNA isoforms with shorter 3´ untranslated regions (3´-UTRs) derived from alternative pre-mRNA cleavage and polyadenylation (APA). However, the physiological relevance of APA programs remains poorly understood. CD5 is a T-cell surface glycoprotein that negatively regulates TCR signaling from the onset of T-cell activation. CD5 plays a pivotal role in mediating outcomes of cell survival or apoptosis, and may prevent both autoimmunity and cancer. In human primary T lymphocytes and Jurkat cells we found three distinct mRNA isoforms encoding CD5, each derived from distinct poly(A) signals (PASs). Upon T-cell activation, there is an overall increase in CD5 mRNAs with a specific increase in the relative expression of the shorter isoforms. 3´-UTRs derived from these shorter isoforms confer higher reporter expression in activated T cells relative to the longer isoform. We further show that polypyrimidine tract binding protein (PTB/PTBP1) directly binds to the proximal PAS and PTB siRNA depletion causes a decrease in mRNA derived from this PAS, suggesting an effect on stability or poly(A) site selection to circumvent targeting of the longer CD5 mRNA isoform by miR-204. These mechanisms fine-tune CD5 expression levels and thus ultimately T-cell responses.


Assuntos
Antígenos CD5/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , MicroRNAs/genética , Poliadenilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Antígenos CD5/metabolismo , Regulação da Expressão Gênica , Humanos , Células Jurkat , Modelos Biológicos , Poli A , Interferência de RNA , Isoformas de RNA , RNA Mensageiro/genética
8.
J Immunol ; 193(1): 391-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24890719

RESUMO

The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. During Ag presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent manner, in which CD6 domain 3 directly contacts CD166, expressed on the APC. T cell activation results in the induction of CD6Δd3, an alternatively spliced isoform that lacks the ligand-binding domain and thus no longer localizes at the immunological synapse. In this study, we investigated the molecular mechanisms regulating the expression of CD6Δd3 upon human primary T cell activation. Using chromatin immunoprecipitation, we observed an increase in RNA polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We showed that activation leads to transcription-related chromatin modifications, revealed by higher CD6 acetylation levels. Modulation of chromatin conformation using a histone deacetylase inhibitor that increases transcription rate causes an increase of exon 5 skipping. We further showed that the splicing factor SRSF1 binds to a regulatory element in CD6 intron 4, activating exon 5 splicing and promoting exon 5 inclusion. Concomitant with T cell activation-induced exon 5 skipping, we observed a downregulation of SRSF1. Using RNA immunoprecipitation, we showed that in activated T cells, SRSF1 recruitment to the CD6 transcript is impaired by increased chromatin acetylation levels. We propose that upon T cell activation, SRSF1 becomes limiting, and its function in CD6 exon 5 splicing is countered by an increase in CD6 transcription, dependent on chromatin acetylation.


Assuntos
Processamento Alternativo/fisiologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Ativação Linfocitária/fisiologia , Proteínas Nucleares/imunologia , Proteínas de Ligação a RNA/imunologia , Linfócitos T/imunologia , Transcrição Gênica/imunologia , Acetilação , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/imunologia , Cromatina/genética , Cromatina/imunologia , Feminino , Proteínas Fetais/genética , Proteínas Fetais/imunologia , Humanos , Íntrons/imunologia , Masculino , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Polimerase II/imunologia , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Linfócitos T/citologia , Transcrição Gênica/genética
9.
Biochim Biophys Acta ; 1842(11): 2049-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25035294

RESUMO

OBJECTIVES: To evaluate the role of S100A4, a calcium-binding regulator of nonmuscle myosin assembly, for T-cell responses in rheumatoid arthritis. METHODS: Arthritis was induced in the methylated bovine serum albumin (mBSA)-immunized mice lacking the entire S100A4 protein (S100A4KO) and in wild-type counterparts treated with short hairpin ribonucleic acid (shRNA)-lentiviral constructs targeting S100A4 (S100A4-shRNA). The severity of arthritis was evaluated morphologically. T-cell subsets were characterized by the expression of master transcription factors, and functionally by proliferation activity and cytokine production. The activity of the Scr-kinases Fyn and Lck was assessed by the autophosphorylation of C-terminal thyrosine and by the phosphorylation of the CD5 cytodomain. The interaction between S100A4 and the CD5 cytodomain was analysed by nuclear magnetic resonance spectrophotometry. RESULTS: S100A4-deficient mice (S100A4KO and S100A4-shRNA) had significantly alleviated morphological signs of arthritis and joint damage. Leukocyte infiltrates in the arthritic joints of S100A4-deficient mice accumulated Foxp3(+) Treg cells, while the number of RORγt(+) and (pTyr705)STAT3(+) cells was reduced. S100A4-deficient mice had a limited formation of Th17-cells with low retinoic acid orphan receptor gamma t (RORγt) mRNA and IL17 production in T-cell cultures. S100A4-deficient mice had a low expression and activity of T-cell receptor (TCR) inhibitor CD5 and low (pTyr705)STAT3 (signal transducer and activator of transcription 3), which led to increased (pTyr352)ZAP-70 (theta-chain associated protein kinase of 70kDa), lymphocyte proliferation and production of IL2. In vitro experiments showed that S100A4 directly binds Lck and Fyn and reciprocally regulates their kinase activity towards the CD5 cytodomain. Spectrometry demonstrates an interaction between the CD5 cytodomain and EF2-binding sites of S100A4. CONCLUSION: The present study demonstrates that S100A4 plays an important part in the pathogenesis of arthritis. It controls CD5-dependent differentiation of Th17 cells by regulating the activity of the Src-family kinases Lck and Fyn.

10.
EMBO J ; 30(12): 2431-44, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21602789

RESUMO

Regulated alternative polyadenylation is an important feature of gene expression, but how gene transcription rate affects this process remains to be investigated. polo is a cell-cycle gene that uses two poly(A) signals in the 3' untranslated region (UTR) to produce alternative messenger RNAs that differ in their 3'UTR length. Using a mutant Drosophila strain that has a lower transcriptional elongation rate, we show that transcription kinetics can determine alternative poly(A) site selection. The physiological consequences of incorrect polo poly(A) site choice are of vital importance; transgenic flies lacking the distal poly(A) signal cannot produce the longer transcript and die at the pupa stage due to a failure in the proliferation of the precursor cells of the abdomen, the histoblasts. This is due to the low translation efficiency of the shorter transcript produced by proximal poly(A) site usage. Our results show that correct polo poly(A) site selection functions to provide the correct levels of protein expression necessary for histoblast proliferation, and that the kinetics of RNA polymerase II have an important role in the mechanism of alternative polyadenylation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Poli A/metabolismo , Poliadenilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais/genética , Regiões 3' não Traduzidas/genética , Animais , Animais Geneticamente Modificados , Proliferação de Células , Sobrevivência Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Variação Genética/genética , Cinética , Poli A/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , RNA Polimerase II/biossíntese , RNA Polimerase II/genética
11.
Biomacromolecules ; 16(9): 2904-10, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26241560

RESUMO

Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol.


Assuntos
Colesterol , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico , Bicamadas Lipídicas , Peptídeos , Fosfolipídeos , Células CACO-2 , Colesterol/química , Colesterol/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/farmacologia , Lipossomos , Peptídeos/química , Peptídeos/farmacologia , Fosfolipídeos/química , Fosfolipídeos/farmacologia
12.
Nat Commun ; 15(1): 4119, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750020

RESUMO

Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Sepse , Animais , Sepse/imunologia , Sepse/tratamento farmacológico , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Ceco/cirurgia , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Humanos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ligadura , Lipopolissacarídeos , Choque Séptico/imunologia
13.
Eur J Immunol ; 42(1): 195-205, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21956609

RESUMO

The T lineage glycoprotein CD6 is generally considered to be a costimulator of T-cell activation. Here, we demonstrate that CD6 significantly reduces early and late T-cell responses upon superantigen stimulation or TCR triggering by Abs. Measuring calcium mobilization in single cells responding to superantigen, we found that human T cells expressing rat CD6 react significantly less well compared with T cells not expressing the exogenous receptor. When the cytoplasmic domain of rat CD6 was removed, calcium responses were recovered, indicating that the inhibitory properties of CD6 are attributable to its cytoplasmic domain. Calcium responses, and also late indicators of T-cell activation such as IL-2 release, were also diminished in TCR-activated Jurkat cells expressing human CD6, compared with CD6-deficient cells or cells expressing a cytoplasmic deletion mutant of human CD6. Similarly, calcium signals triggered by anti-CD3 were enhanced in human T lymphocytes following morpholino-mediated suppression of CD6 expression. Finally, the proliferation of T lymphocytes was increased when the CD6-CD166 interaction was blocked with anti-CD166 Abs, but inhibited when anti-CD6 Abs were used. Our data suggest that CD6 is a signaling attenuator whose expression alone, i.e. in the absence of ligand engagement, is sufficient to restrain signaling in T cells.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Cálcio/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Molécula de Adesão de Leucócito Ativado/imunologia , Animais , Complexo CD3/imunologia , Cálcio/análise , Citometria de Fluxo , Humanos , Células Jurkat , Ativação Linfocitária , Ratos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/citologia , Transfecção
14.
J Biol Chem ; 286(35): 30324-30336, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757751

RESUMO

Triggering of the T cell receptor initiates a signaling cascade resulting in the activation of the T cell. These signals are integrated alongside those resulting from the triggering of other receptors whose function is to modulate the overall response. CD5 is an immunotyrosine-based inhibition motif-bearing receptor that antagonizes the overt T cell receptor activation response by recruiting inhibitory intracellular mediators such as SHP-1, RasGAP, or Cbl. We now propose that the inhibitory effects of CD5 are also mediated by a parallel pathway that functions at the level of inhibition of Fyn, a kinase generally associated with T cell receptor-mediated activation. After CD5 ligation, phosphorylation of the negative regulatory tyrosine (Tyr(531)) of Fyn increases, and this correlates with a substantial reduction in the kinase activity of Fyn and a profound inhibition of ZAP-70 activation. The effect requires the last 23 amino acids of the cytoplasmic domain of the receptor, strongly implying the involvement of a new CD5-interacting signaling or adaptor protein. Furthermore, we show that upon CD5 ligation there is a profound shift in its distribution from the bulk fluid phase to the lipid raft environment, where it associates with Fyn, Lck, and PAG. We suggest that the relocation of CD5, which we also show is capable of forming homodimers, to the proximity of raft-resident molecules enables CD5 to inhibit membrane proximal signaling by controlling the phosphorylation and activity of Fyn, possibly by interfering with the disassembly of C-terminal Src kinase (Csk)-PAG-Fyn complexes during T cell activation.


Assuntos
Antígenos CD5/química , Glicoproteínas/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Linfócitos T/metabolismo , Motivos de Aminoácidos , Animais , Dimerização , Humanos , Células Jurkat , Leucócitos Mononucleares/citologia , Microdomínios da Membrana/química , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Transdução de Sinais
15.
J Biol Chem ; 286(37): 31993-2001, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21757710

RESUMO

Understanding the component stoichiometry of the T cell antigen receptor (TCR) triggering apparatus is essential for building realistic models of signal initiation. Recent studies suggesting that the TCR and other signaling-associated proteins are preclustered on resting T cells relied on measurements of the behavior of membrane proteins at interfaces with functionalized glass surfaces. Using fluorescence recovery after photobleaching, we show that, compared with the apical surface, the mobility of TCRs is significantly reduced at Jurkat T cell/glass interfaces, in a signaling-sensitive manner. Using two biophysical approaches that mitigate these effects, bioluminescence resonance energy transfer and two-color coincidence detection microscopy, we show that, within the uncertainty of the methods, the membrane components of the TCR triggering apparatus, i.e. the TCR complex, MHC molecules, CD4/Lck and CD45, are exclusively monovalent or monomeric in human T cell lines, implying that TCR triggering depends only on the kinetics of TCR/pMHC interactions. These analyses also showed that constraining proteins to two dimensions at the cell surface greatly enhances random interactions versus those between the membrane and the cytoplasm. Simulations of TCR-pMHC complex formation based on these findings suggest how unclustered TCR triggering-associated proteins might nevertheless be capable of generating complex signaling outputs via the differential recruitment of cytosolic effectors to the cell membrane.


Assuntos
Antígenos CD4/imunologia , Antígenos HLA/imunologia , Antígenos Comuns de Leucócito/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Receptores de Antígenos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Antígenos CD4/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Citosol/imunologia , Citosol/metabolismo , Células HEK293 , Antígenos HLA/metabolismo , Humanos , Células Jurkat , Antígenos Comuns de Leucócito/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Modelos Imunológicos , Receptores de Antígenos/metabolismo , Linfócitos T/metabolismo
16.
PLoS Biol ; 6(8): e207, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18752348

RESUMO

Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II-depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II-depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule-kinetochore attachments by allowing proper activation of Aurora B kinase.


Assuntos
Centrômero/fisiologia , DNA Topoisomerases Tipo II/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Aurora Quinase B , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , DNA Topoisomerases Tipo II/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ativação Enzimática , Células HeLa , Humanos , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Interferência de RNA/fisiologia , Troca de Cromátide Irmã/fisiologia , Fuso Acromático/fisiologia , Inibidores da Topoisomerase II
17.
Front Immunol ; 12: 760770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003072

RESUMO

Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.


Assuntos
Infecções Bacterianas/imunologia , Infecções por Protozoários/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores Depuradores Classe B/imunologia , Animais , Bactérias , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Leishmania , Leucócitos/imunologia , Neospora , Fagocitose , Plasmodium berghei , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Proteínas Recombinantes/imunologia , Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/genética , Trypanosoma brucei brucei
18.
EBioMedicine ; 47: 427-435, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31481324

RESUMO

In recent years molecules involved on the immune synapse became successful targets for therapeutic immune modulation. CD6 has been extensively studied, yet, results regarding CD6 biology have been controversial, in spite of the ubiquitous presence of this molecule on virtually all CD4 T cells. We investigated the outcome of murine and human antibodies targeting CD6 domain 1. We found that CD6-targeting had a major impact on the functional specialization of CD4 cells, both human and murine. Differentiation of CD4 T cells towards a Foxp3+ Treg fate was prevented with increasing doses of anti-CD6, while Th1 polarization was favoured. No impact was observed on Th2 or Th17 specialization. These in vitro results provided an explanation for the dose-dependent outcome of in vivo anti-CD6 administration where the anti-inflammatory action is lost at the highest doses. Our data show that therapeutic targeting of the immune synapse may lead to paradoxical dose-dependent effects due to modification of T cell fate.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Animais , Biomarcadores , Linfócitos T CD4-Positivos/citologia , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Proteínas Fetais/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Front Immunol ; 9: 2994, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619347

RESUMO

Following T cell receptor triggering, T cell activation is initiated and amplified by the assembly at the TCR/CD3 macrocomplex of a multitude of stimulatory enzymes that activate several signaling cascades. The potency of signaling is, however, modulated by various inhibitory components already at the onset of activation, long before co-inhibitory immune checkpoints are expressed to help terminating the response. CD5 and CD6 are surface glycoproteins of T cells that have determinant roles in thymocyte development, T cell activation and immune responses. They belong to the superfamily of scavenger receptor cysteine-rich (SRCR) glycoproteins but whereas the inhibitory role of CD5 has been established for long, there is still controversy on whether CD6 may have similar or antagonistic functions on T cell signaling. Analysis of the structure and molecular associations of CD5 and CD6 indicates that these molecules assemble at the cytoplasmic tail a considerable number of signaling effectors that can putatively transduce diverse types of intracellular signals. Biochemical studies have concluded that both receptors can antagonize the flow of TCR-mediated signaling; however, the impact that CD5 and CD6 have on T cell development and T cell-mediated immune responses may be different. Here we analyze the signaling function of CD6, the common and also the different properties it exhibits comparing with CD5, and interpret the functional effects displayed by CD6 in recent animal models.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD5/imunologia , Antígenos CD5/metabolismo , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo
20.
Food Chem Toxicol ; 121: 450-457, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30240731

RESUMO

The cell growth inhibitory potential of xanthohumol (XN), a natural prenylflavonoid present in hops and beer, on human papillary thyroid cancer cells is reported. We demonstrate that XN decreases the proliferation of TPC-1 cancer cells in a dose and time dependent manners. At low concentration (10 µM) XN was shown to significantly inhibit carcinogenesis by a mechanism that stops or slows down cell division, preserving the viability of the cells. At higher concentration (100 µM) a decrease of cell viability was observed by induction of apoptosis. As evidenced, XN induced DNA fragmentation in TPC-1 cells and promoted cell cycle arrest, which decreased the percentage of cells in G1 phase and increased in S phase after 72 h of treatment. Furthermore, XN exposure triggered an increase in caspase-3 and caspase-7 activity, supporting its role in the activation of apoptosis. Cell-free studies demonstrated that high concentrations of XN are responsible for an increase of free radicals generated in a Fenton system which may mediate apoptosis through a pro-oxidant pathway. Altogether, our data show that XN induces the apoptosis of TPC-1 cancer cells in a concentration-dependent manner, suggesting XN to be a promising candidate for thyroid cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Propiofenonas/farmacologia , Glândula Tireoide/citologia , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Cerveja/análise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Humanos , Humulus/química , Estrutura Molecular , Propiofenonas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa