Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445252

RESUMO

Gulf War Illness (GWI) is a persistent chronic neuroinflammatory illness exacerbated by external stressors and characterized by fatigue, musculoskeletal pain, cognitive, and neurological problems linked to underlying immunological dysfunction for which there is no known treatment. As the immune system and the brain communicate through several signaling pathways, including the hypothalamic-pituitary-adrenal (HPA) axis, it underlies many of the behavioral and physiological responses to stressors via blood-borne mediators, such as cytokines, chemokines, and hormones. Signaling by these molecules is mediated by the semipermeable blood-brain barrier (BBB) made up of a monocellular layer forming an integral part of the neuroimmune axis. BBB permeability can be altered and even diminished by both external factors (e.g., chemical agents) and internal conditions (e.g., acute or chronic stress, or cross-signaling from the hypothalamic-pituitary-gonadal (HPG) axis). Such a complex network of regulatory interactions that possess feed-forward and feedback connections can have multiple response dynamics that may include several stable homeostatic states beyond normal health. Here we compare immune and hormone measures in the blood of human clinical samples and mouse models of Gulf War Illness (GWI) subtyped by exposure to traumatic stress for subtyping this complex illness. We do this via constructing a detailed logic model of HPA-HPG-Immune regulatory behavior that also considers signaling pathways across the BBB to neuronal-glial interactions within the brain. We apply conditional interactions to model the effects of changes in BBB permeability. Several stable states are identified in the system beyond typical health. Following alignment of the human and mouse blood profiles in the context of the model, mouse brain sample measures were used to infer the neuroinflammatory state in human GWI and perform treatment simulations using a genetic algorithm to optimize the Monte Carlo simulations of the putative treatment strategies aimed at returning the ill system back to health. We identify several ideal multi-intervention strategies and potential drug candidates that may be used to treat chronic neuroinflammation in GWI.


Assuntos
Barreira Hematoencefálica/imunologia , Modelos Imunológicos , Modelos Neurológicos , Neuroimunomodulação , Síndrome do Golfo Pérsico , Transdução de Sinais , Adulto , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Síndrome do Golfo Pérsico/tratamento farmacológico , Síndrome do Golfo Pérsico/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
2.
Games Health J ; 8(5): 366-369, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31539292

RESUMO

Objective: In recent years, immersive videogame technologies such as virtual reality have been shown to affect psychological welfare in such way that they can be applied to clinical psychology treatments. However, the effects of videogaming with other immersive gaming apparatuses such as commercial electroencephalography (EEG)-based brain-computer interfaces (BCIs) on psychological welfare have not been extensively researched. Thus, we aimed at providing early insights into some of these effects by looking at how videogaming with a commercial EEG-based BCI would impact mood and physiological arousal. Materials and Methods: A total of 26 participants were sampled. Participants were randomly assigned to either a BCI condition or a traditional condition wherein they played an action videogame with a commercial EEG-based BCI or a standard keyboard and mouse interface for 20 minutes. In both conditions, participants filled out the profile of mood states to assess mood and the perceived stress scale to control for stress. We also measured heart rate, heart rate variability as measured by the root mean square of successive differences, and galvanic skin response (GSR) amplitude differences. Results: Participants in the BCI condition overall reported a significantly higher total mood disturbance (P < 0.05), tension (P < 0.05), confusion (P < 0.05), and significantly less vigor (P < 0.05). We also found that participants in the BCI condition had significantly lower GSR amplitude differences between gaming and baseline (P < 0.05). Conclusion: The results suggest that the use of commercial EEG-based BCIs for playing with videogames can induce greater frustration and negative moods than playing with a traditional keyboard and mouse interface, possibly limiting their use in clinical psychology settings.


Assuntos
Afeto/fisiologia , Nível de Alerta/fisiologia , Interfaces Cérebro-Computador/psicologia , Jogos de Vídeo/psicologia , Adolescente , Interfaces Cérebro-Computador/tendências , Feminino , Humanos , Masculino , Jogos de Vídeo/tendências , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa