Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396911

RESUMO

In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 µs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.


Assuntos
Mitocôndrias , Neoplasias , Mitocôndrias/metabolismo , Membrana Celular/metabolismo , Eletricidade , Citoesqueleto/metabolismo , Encéfalo/metabolismo , Neoplasias/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328420

RESUMO

Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Adulto , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia , Glioblastoma/metabolismo , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232813

RESUMO

Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1ß, S-100, Tgf-ß and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/-/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.


Assuntos
Neoplasias Encefálicas , Colite , Doenças Inflamatórias Intestinais , Aminoácidos , Animais , Eixo Encéfalo-Intestino , Carcinogênese , Colite/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamação , Interleucina-6/metabolismo , Lipídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Sulfatos , Tiamina , Fator de Crescimento Transformador beta/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830484

RESUMO

Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.


Assuntos
Proteínas Hedgehog/genética , Hipocampo/efeitos da radiação , Neurogênese/genética , Receptor Patched-1/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Redes Reguladoras de Genes/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Knockout , Neurogênese/efeitos da radiação , Neurônios/metabolismo , Neurônios/efeitos da radiação , Qualidade de Vida , Radiação Ionizante , Transdução de Sinais/efeitos da radiação
5.
Am J Pathol ; 185(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25452120

RESUMO

Age-related cataract is the most common cause of visual impairment. Moreover, traumatic cataracts form after injury to the eye, including radiation damage. We report herein that sonic hedgehog (Shh) signaling plays a key role in cataract development and in normal lens response to radiation injury. Mice heterozygous for Patched 1 (Ptch1), the Shh receptor and negative regulator of the pathway, develop spontaneous cataract and are highly susceptible to cataract induction by exposure to ionizing radiation in early postnatal age, when lens epithelial cells undergo rapid expansion in the lens epithelium. Neonatally irradiated and control Ptch1(+/-) mice were compared for markers of progenitors, Shh pathway activation, and epithelial-to-mesenchymal transition (EMT). Molecular analyses showed increased expression of the EMT-related transforming growth factor ß/Smad signaling pathway in the neonatally irradiated lens, and up-regulation of mesenchymal markers Zeb1 and Vim. We further show a link between proliferation and the stemness property of lens epithelial cells, controlled by Shh. Our results suggest that Shh and transforming growth factor ß signaling cooperate to promote Ptch1-associated cataract development by activating EMT, and that the Nanog marker of pluripotent cells may act as the primary transcription factor on which both signaling pathways converge after damage. These findings highlight a novel function of Shh signaling unrelated to cancer and provide a new animal model to investigate the molecular pathogenesis of cataract formation.


Assuntos
Catarata/metabolismo , Regulação da Expressão Gênica , Cristalino/metabolismo , Receptores de Superfície Celular/genética , Alelos , Animais , Proliferação de Células , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Cristalino/patologia , Cristalino/efeitos da radiação , Camundongos , Camundongos Transgênicos , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo , Raios X , Homeobox 1 de Ligação a E-box em Dedo de Zinco
6.
Stem Cells ; 31(11): 2506-16, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23897709

RESUMO

Neural stem cells are highly susceptible to radiogenic DNA damage, however, little is known about their mechanisms of DNA damage response (DDR) and the long-term consequences of genotoxic exposure. Patched1 heterozygous mice (Ptc1(+/-)) provide a powerful model of medulloblastoma (MB), a frequent pediatric tumor of the cerebellum. Irradiation of newborn Ptc1(+/-) mice dramatically increases the frequency and shortens the latency of MB. In this model, we investigated the mechanisms through which multipotent neural progenitors (NSCs) and fate-restricted progenitor cells (PCs) of the cerebellum respond to DNA damage induced by radiation, and the long-term developmental and oncogenic consequences. These responses were assessed in mice exposed to low (0.25 Gy) or high (3 Gy) radiation doses at embryonic day 13.5 (E13.5), when NSCs giving rise to the cerebellum are specified but the external granule layer (EGL) has not yet formed, or at E16.5, during the expansion of granule PCs to form the EGL. We found crucial differences in DDR and apoptosis between NSCs and fate-restricted PCs, including lack of p21 expression in NSCs. NSCs also appear to be resistant to oncogenesis from low-dose radiation exposure but more vulnerable at higher doses. In addition, the pathway to DNA repair and the pattern of oncogenic alterations were strongly dependent on age at exposure, highlighting a differentiation-stage specificity of DNA repair pathways in NSCs and PCs. These findings shed light on the mechanisms used by NSCs and PCs to maintain genome integrity during neurogenesis and may have important implications for radiation risk assessment and for development of targeted therapies against brain tumors.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/efeitos da radiação , Células-Tronco Neurais/efeitos da radiação , Células-Tronco/fisiologia , Células-Tronco/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Cerebelo/citologia , Cerebelo/patologia , Dano ao DNA , Reparo do DNA , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Células-Tronco/citologia
7.
Phys Med Biol ; 69(18)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39142335

RESUMO

Objective.Recent studies have indicated that repetitive transcranial magnetic stimulation (rTMS) could enhance cognition in Alzheimer's Disease (AD) patients, but to now the molecular-level interaction mechanisms driving this effect remain poorly understood. While cognitive scores have been the primary measure of rTMS effectiveness, employing molecular-based approaches could offer more precise treatment predictions and prognoses. To reach this goal, it is fundamental to assess the electric field (E-field) and the induced current densities (J) within the stimulated brain areas and to translate these values toin vitrosystems specifically devoted in investigating molecular-based interactions of this stimulation.Approach.This paper offers a methodological procedure to guide dosimetric assessment to translate the E-field induced in humans (in a specific pilot study) intoin vitrosettings. Electromagnetic simulations on patients' head models and cellular holders were conducted to characterize exposure conditions and determine necessary adjustments forin vitroreplication of the same dose delivered in humans using the same stimulating coil.Main results.Our study highlighted the levels of E-field andJinduced in the target brain region and showed that the computed E-field andJwere different among patients that underwent the treatment, so to replicate the exposure to thein vitrosystem, we have to consider a range of electric quantities as reference. To match the E-field to the levels calculated in patients' brains, an increase of at least the 25% in the coil feeding current is necessary whenin vitrostimulations are performed. Conversely, to equalize current densities, modifications in the cells culture medium conductivity have to be implemented reducing it to one fifth of its value.Significance.This dosimetric assessment and subsequent experimental adjustments are essential to achieve controlledin vitroexperiments to better understand rTMS effects on AD cognition. Dosimetry is a fundamental step for comparing the cognitive effects with those obtained by stimulating a cellular model at an equal dose rigorously evaluated.


Assuntos
Doença de Alzheimer , Radiometria , Estimulação Magnética Transcraniana , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/radioterapia , Humanos , Pesquisa Translacional Biomédica
8.
Cells ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891031

RESUMO

Apolipoprotein E (ApoE) is a lipid carrier in both the peripheral and the central nervous systems (CNSs). Lipid-loaded ApoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and brain injury repair. In the brain, ApoE is produced predominantly by astrocytes, but it is also abundantly expressed in most neurons of the CNS. In this study, we addressed the role of ApoE in the hippocampus in mice, focusing on its role in response to radiation injury. To this aim, 8-week-old, wild-type, and ApoE-deficient (ApoE-/-) female mice were acutely whole-body irradiated with 3 Gy of X-rays (0.89 Gy/min), then sacrificed 150 days post-irradiation. In addition, age-matching ApoE-/- females were chronically whole-body irradiated (20 mGy/d, cumulative dose of 3 Gy) for 150 days at the low dose-rate facility at the Institute of Environmental Sciences (IES), Rokkasho, Japan. To seek for ApoE-dependent modification during lineage progression from neural stem cells to neurons, we have evaluated the cellular composition of the dentate gyrus in unexposed and irradiated mice using stage-specific markers of adult neurogenesis. Our findings indicate that ApoE genetic inactivation markedly perturbs adult hippocampal neurogenesis in unexposed and irradiated mice. The effect of ApoE inactivation on the expression of a panel of miRNAs with an established role in hippocampal neurogenesis, as well as its transcriptional consequences in their target genes regulating neurogenic program, have also been analyzed. Our data show that the absence of ApoE-/- also influences synaptic functionality and integration by interfering with the regulation of mir-34a, mir-29b, and mir-128b, leading to the downregulation of synaptic markers PSD95 and synaptophysin mRNA. Finally, compared to acute irradiation, chronic exposure of ApoE null mice yields fewer consequences except for the increased microglia-mediated neuroinflammation. Exploring the function of ApoE in the hippocampus could have implications for developing therapeutic approaches to alleviate radiation-induced brain injury.


Assuntos
Apolipoproteínas E , Hipocampo , MicroRNAs , Radiação Ionizante , Animais , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Camundongos , Feminino , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos da radiação , Neurogênese/efeitos da radiação , Irradiação Corporal Total , Exposição à Radiação/efeitos adversos , Giro Denteado/metabolismo , Giro Denteado/efeitos da radiação , Giro Denteado/patologia
9.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614282

RESUMO

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipocampo , Fótons , Terapia com Prótons , Animais , Camundongos , Apoptose/efeitos da radiação , Terapia com Prótons/efeitos adversos , Hipocampo/efeitos da radiação , Meduloblastoma/radioterapia , Meduloblastoma/patologia , Carcinogênese/efeitos da radiação , Camundongos Knockout , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , Encéfalo/efeitos da radiação , Receptor Patched-1/genética , Modelos Animais de Doenças , Prótons/efeitos adversos
10.
Front Oncol ; 14: 1307516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884089

RESUMO

Introduction: Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease. Methods: The exposure setup was meticulously developed in-house, and we employed a comprehensive dosimetry approach, combining numerical and experimental methods. Biological endpoints included a global transcriptional profiling analysis to highlight possible deregulated pathways, analysis of cell morphological changes, and cell phenotypic characterization which are all important players in the control of glioblastoma progression. Results and discussion: Our results revealed a significant effect of continuous millimeter waves at 30.5 GHz on cell proliferation and apoptosis, although without affecting the differentiation status of glioblastoma cells composing the organoids. Excitingly, when applying a power level of 0.1 W (Root Mean Square), we discovered a remarkable (statistically significant) therapeutic effect when combined with the chemotherapeutic agent Temozolomide, leading to increased glioblastoma cell death. These findings present a promising interventional window for treating glioblastoma cells, harnessing the potential therapeutic benefits of 30.5 GHz CW exposure. Temperature increase during treatments was carefully monitored and simulated with a good agreement, demonstrating a negligible involvement of the temperature elevation for the observed effects. By exploring this innovative approach, we pave the way for improved future treatments of glioblastoma that has remained exceptionally challenging until now.

11.
Genome Integr ; 14: 1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025521

RESUMO

Radiotherapy is one of the main options to cure and control breast cancer. The aim of this study was to investigate the sensitivity of two human breast cancer cell lines, MCF7 and MDA-MD-231, to radiation exposure at timepoints 4 h and 24 h after radiation. MCF7 and MDA-MD-231 were irradiated with different radiation doses using a Gilardoni CHF 320 G X-ray generator (Mandello del Lario, Italy) at 250 kVp, 15 mA [with half-value layer (HVL) = 1.6 mm copper]. The ApoTox-Glo triplex assay combines three assays used to assess viability, cytotoxicity, and apoptosis. The expression of γH2AX and BAX was analyzed by Western blotting. Viability and cytotoxicity did not change 4 h and 24 h after irradiation in either cell line, but we found a significant increase in the expression of cleaved caspase-3/7 at 24 h after irradiation with 8.5 Gy in MDA-MB231. The expression of γH2AX and BAX was low in MCF7, whereas the expression of γH2AX and BAX increased with radiation dose in a dose-dependent manner in MDA-MB231. The results show that the MCF7 cell line is more radioresistant than the MDA-MB 231 cell line at 4 h and 24 h after X-ray irradiation. In contrast, MDA-MB-231 cells were radiosensitive at a high radiation dose of 8.5 Gy at 24 h after irradiation. γH2AX and BAX indicated the radiosensitivity in both cell lines. These results open the possibility of using these cancer cell lines as models for testing new therapeutic strategies to improve radiation therapy.

12.
Int J Radiat Oncol Biol Phys ; 109(5): 1495-1507, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509660

RESUMO

PURPOSE: Cancer stem cells constitute an endless reserve for the maintenance and progression of tumors, and they could be the reason for conventional therapy failure. New therapeutic strategies are necessary to specifically target them. In this context, microsecond pulsed electric fields have been selected to expose D283Med cells, a human medulloblastoma cell line resulted to be rich in cancer stem cells, and normal human astrocytes. METHODS: We analyzed in vitro different endpoints at different times after microsecond pulsed electric field exposure, such as permeabilization, reactive oxygen species generation, cell viability/proliferation, cell cycle, and clonogenicity, as well as the expression of different genes involved in cell cycle, apoptosis, and senescence. Furthermore, the response of D283Med cells exposed to microsecond pulsed electric fields was validated in vivo in a heterotopic mouse xenograft model. RESULTS: Our in vitro results showed that a specific pulse protocol (ie, 0.3 MV/m, 40 µs, 5 pulses) was able to induce irreversible membrane permeabilization and apoptosis exclusively in medulloblastoma cancer stem cells. In the surviving cells, reactive oxygen species generation was observed, together with a transitory G2/M cell-cycle arrest with a senescence-associated phenotype via the upregulation of GADD45A. In vivo results, after pulsed electric field exposure, demonstrated a significant tumor volume reduction with no eradication of tumor mass. In conjunction, we verified the efficacy of electric pulse pre-exposure followed by ionizing irradiation in vivo to enable complete inhibition of tumor growth. CONCLUSIONS: Our data reveal novel therapeutic options for the targeting of medulloblastoma cancer stem cells, indicating nonionizing pulsed electric field pre-exposure as an effective means to overcome the radioresistance of cancer stem cells.


Assuntos
Neoplasias Cerebelares/terapia , Eletroporação/métodos , Meduloblastoma/terapia , Células-Tronco Neoplásicas/fisiologia , Animais , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células , Sobrevivência Celular , Senescência Celular/genética , Neoplasias Cerebelares/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Genes cdc , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancers (Basel) ; 12(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963405

RESUMO

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains significant and the long-term adverse effects in survivors are substantial. The fraction of cancer stem-like cells (CSCs) because of their self-renewal ability and multi-lineage differentiation potential is critical for tumor initiation, growth, and resistance to therapies. For the development of new CSC-targeted therapies, further in-depth studies are needed using enriched and stable MB-CSCs populations. This work, aimed at identifying the amount of CSCs in three available human cell lines (DAOY, D341, and D283), describes different approaches based on the expression of stemness markers. First, we explored potential differences in gene and protein expression patterns of specific stem cell markers. Then, in order to identify and discriminate undifferentiated from differentiated cells, MB cells were characterized using a physical characterization method based on a high-frequency dielectrophoresis approach. Finally, we compared their tumorigenic potential in vivo, through engrafting in nude mice. Concordantly, our findings identified the D283 human cell line as an ideal model of CSCs, providing important evidence on the use of a commercial human MB cell line for the development of new strategic CSC-targeting therapies.

15.
Front Mol Neurosci ; 11: 168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875630

RESUMO

Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/- ). We demonstrated for the first time, that Ptch1+/- mice exhibit morphological, cellular and molecular alterations in the dentate gyrus (DG), including elongation and reduced width of the DG as well as deregulations at multiple steps during lineage progression from neural stem cells to neurons. By using stage-specific cellular markers, we detected reduction of quiescent stem cells, newborn neurons and astrocytes and accumulation of proliferating intermediate progenitors, indicative of defects in the dynamic transition among neural stages. Phenotypic alterations in Ptch1+/- mice were accompanied by expression changes in Notch pathway downstream components and TLX nuclear receptor, as well as perturbations in inflammatory and synaptic networks and mouse behavior, pointing to complex biological interactions and highlighting cooperation between Shh and Notch signaling in the regulation of neurogenesis.

16.
Oncotarget ; 8(60): 100958-100974, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254138

RESUMO

Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor Rad54 and Parp-1, a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair. We introduced single or combined Rad54 and Parp-1 inactivating germline mutations in Ptc1 heterozygous mice, a well-characterized model of medulloblastoma, the most common malignant pediatric brain tumor. Our study reveals that combined inactivation of Rad54 and Parp-1 causes a marked growth delay culminating in perinatallethality, providing for the first time evidence of synthetic lethal interactions between Rad54 and Parp-1 in vivo. Although the double mutation hampered investigation of Rad54 and Parp-1 interactions in cerebellum tumorigenesis, insights were gained by showing accumulation of endogenous DNA damage and increased apoptotic rate in granule cell precursors (GCPs). A network-based approach to detect differential expression of DNA repair genes in the cerebellum revealed perturbation of p53 signaling in Rad54-/-/Parp-1-/-/Ptc1+/-, and MEFs from combined Rad54/Parp-1 mutants showed p53/p21-dependent typical senescent features. These findings help elucidate the genetic interplay between Rad54 and Parp-1 by suggesting that p53/p21-mediated apoptosis and/or senescence may be involved in synthetic lethal interactions occurring during development and inhibition of tumor growth.

17.
Oncotarget ; 7(19): 28040-58, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27057631

RESUMO

Therapeutic irradiation of pediatric and adult patients can profoundly affect adult neurogenesis, and cognitive impairment manifests as a deficit in hippocampal-dependent functions. Age plays a major role in susceptibility to radiation, and younger children are at higher risk of cognitive decay when compared to adults. Cranial irradiation affects hippocampal neurogenesis by induction of DNA damage in neural progenitors, through the disruption of the neurogenic microenvironment, and defective integration of newborn neurons into the neuronal network. Our goal here was to assess cellular and molecular alterations induced by cranial X-ray exposure to low/moderate doses (0.1 and 2 Gy) in the hippocampus of mice irradiated at the postnatal ages of day 10 or week 10, as well as the dependency of these phenomena on age at irradiation. To this aim, changes in the cellular composition of the dentate gyrus, mitochondrial functionality, proteomic profile in the hippocampus, as well as cognitive performance were evaluated by a multidisciplinary approach. Our results suggest the induction of specific alterations in hippocampal neurogenesis, microvascular density and mitochondrial functions, depending on age at irradiation. A better understanding of how irradiation impairs hippocampal neurogenesis at low and moderate doses is crucial to minimize adverse effects of therapeutic irradiation, contributing also to radiation safety regulations.


Assuntos
Irradiação Craniana/efeitos adversos , Hipocampo/efeitos da radiação , Neurogênese/efeitos da radiação , Fatores Etários , Animais , Feminino , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL
18.
FASEB J ; 18(11): 1261-3, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15208263

RESUMO

Mutations in the gene coding for the ubiquitous, anti-oxidant enzyme Cu,Zn superoxide dismutase (SOD1) are associated with familial amyotrophic lateral sclerosis (fALS), a fatal disease characterized by selective loss of motor neurons. Expression of a mutant SOD1 typical of fALS patients restricted to either motor neurons or astrocytes is insufficient to generate a pathological phenotype in mouse models, suggesting that a deleterious interplay between different cell types is necessary for the pathogenesis of the disease. In this study, we demonstrate the actual role of a functional cross-talk between glial and neuronal cells expressing fALS mutant G93A-SOD1, where an increase in the production of reactive oxygen species occurs. We show that human glioblastoma cells expressing G93A-SOD1 induce activation of caspase-1, release of cytokines, and activation of apoptotic pathways in cocultured human neuroblastoma cells also expressing G93A-SOD1. Activation of caspase-1 and caspase-3 is observed also in neuroblastoma lines expressing other fALS-SOD1s (G37R, G85R, and I113T) cocultured with glioblastoma lines expressing the corresponding mutant enzymes. These effects are consequent to activation of inflammatory processes in G93A-glioblastoma cells stimulated by cocultured G93A-neuroblastoma. Furthermore, selective death of embryonal spinal motor neurons from G93A-SOD1 transgenic mice is induced by coculture with G93A-glioblastoma and prevented by inhibition of NO synthase. Proinflammatory cytokines, interferon-gamma, and nitric oxide are among the molecular signals exchanged between glial and neuronal cells that generate a functional interplay between the two cell types. This cross-talk may be crucial for the pathogenesis of SOD1-linked fALS but also for the more common sporadic form of the disease, where markers of increased oxidative stress and of glial activation have been found.


Assuntos
Apoptose/fisiologia , Comunicação Celular/fisiologia , Doença dos Neurônios Motores/patologia , Neuroglia/patologia , Neurônios/patologia , Superóxido Dismutase/fisiologia , Animais , Caspase 1/metabolismo , Catalase/análise , Técnicas de Cocultura , Citocinas/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Glioblastoma/patologia , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , NG-Nitroarginina Metil Éster/farmacologia , Neuroblastoma/patologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Compostos Nitrosos/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Medula Espinal/citologia , Medula Espinal/embriologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transfecção
19.
J Neurodev Disord ; 7(1): 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029273

RESUMO

BACKGROUND: In humans, in utero exposure to ionising radiation results in an increased prevalence of neurological aberrations, such as small head size, mental retardation and decreased IQ levels. Yet, the association between early damaging events and long-term neuronal anomalies remains largely elusive. METHODS: Mice were exposed to different X-ray doses, ranging between 0.0 and 1.0 Gy, at embryonic days (E) 10, 11 or 12 and subjected to behavioural tests at 12 weeks of age. Underlying mechanisms of irradiation at E11 were further unravelled using magnetic resonance imaging (MRI) and spectroscopy, diffusion tensor imaging, gene expression profiling, histology and immunohistochemistry. RESULTS: Irradiation at the onset of neurogenesis elicited behavioural changes in young adult mice, dependent on the timing of exposure. As locomotor behaviour and hippocampal-dependent spatial learning and memory were most particularly affected after irradiation at E11 with 1.0 Gy, this condition was used for further mechanistic analyses, focusing on the cerebral cortex and hippocampus. A classical p53-mediated apoptotic response was found shortly after exposure. Strikingly, in the neocortex, the majority of apoptotic and microglial cells were residing in the outer layer at 24 h after irradiation, suggesting cell death occurrence in differentiating neurons rather than proliferating cells. Furthermore, total brain volume, cortical thickness and ventricle size were decreased in the irradiated embryos. At 40 weeks of age, MRI showed that the ventricles were enlarged whereas N-acetyl aspartate concentrations and functional anisotropy were reduced in the cortex of the irradiated animals, indicating a decrease in neuronal cell number and persistent neuroinflammation. Finally, in the hippocampus, we revealed a reduction in general neurogenic proliferation and in the amount of Sox2-positive precursors after radiation exposure, although only at a juvenile age. CONCLUSIONS: Our findings provide evidence for a radiation-induced disruption of mouse brain development, resulting in behavioural differences. We propose that alterations in cortical morphology and juvenile hippocampal neurogenesis might both contribute to the observed aberrant behaviour. Furthermore, our results challenge the generally assumed view of a higher radiosensitivity in dividing cells. Overall, this study offers new insights into irradiation-dependent effects in the embryonic brain, of relevance for the neurodevelopmental and radiobiological field.

20.
Neurochem Int ; 44(1): 25-33, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12963085

RESUMO

Beta-amyloid peptides (Abeta) are major constituents of senile plaques in Alzheimer's disease (AD) brain and contribute to neurodegeneration, operating through activation of apoptotic pathways. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. Estrogen is thought to play a protective role against neurodegeneration through a variety of mechanisms including scavenging of reactive oxygen species (ROS). In this study, we have challenged with Abeta, either in the presence or in the absence of 17beta-estradiol, differentiated human neuroblastoma SH-SY5Y cells (named line SH) and the same line overexpressing anti-oxidant enzyme superoxide dismutase 1 (SOD1; named line WT). We have observed that: (1) WT cells are less susceptible than SH cells to Abeta insult; (2) caspase-3, but not caspase-1, is involved in Abeta-induced apoptosis in this system; (3) estrogen protects both lines, without significantly affecting SOD activity; and (4) copper chelators prevent Abeta-induced toxicity. Our results further support the notion that anti-oxidant therapy might be beneficial in the treatment of AD by preventing activation of selected apoptotic pathways.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Quelantes/farmacologia , Cobre , Estradiol/farmacologia , Superóxido Dismutase/biossíntese , Superóxido Dismutase/fisiologia , Apoptose/fisiologia , Benzimidazóis , Western Blotting , Neoplasias Encefálicas/metabolismo , Caspase 1/metabolismo , Caspase 3 , Caspases/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Corantes , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Corantes Fluorescentes , Humanos , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1 , Sais de Tetrazólio , Tiazóis , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa