Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 28(23): 2621-35, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452273

RESUMO

Increased PI 3-kinase (PI3K) signaling in pancreatic ductal adenocarcinoma (PDAC) correlates with poor prognosis, but the role of class I PI3K isoforms during its induction remains unclear. Using genetically engineered mice and pharmacological isoform-selective inhibitors, we found that the p110α PI3K isoform is a major signaling enzyme for PDAC development induced by a combination of genetic and nongenetic factors. Inactivation of this single isoform blocked the irreversible transition of exocrine acinar cells into pancreatic preneoplastic ductal lesions by oncogenic Kras and/or pancreatic injury. Hitting the other ubiquitous isoform, p110ß, did not prevent preneoplastic lesion initiation. p110α signaling through small GTPase Rho and actin cytoskeleton controls the reprogramming of acinar cells and regulates cell morphology in vivo and in vitro. Finally, p110α was necessary for pancreatic ductal cancers to arise from Kras-induced preneoplastic lesions by increasing epithelial cell proliferation in the context of mutated p53. Here we identify an in vivo context in which p110α cellular output differs depending on the epithelial transformation stage and demonstrate that the PI3K p110α is required for PDAC induced by oncogenic Kras, the key driver mutation of PDAC. These data are critical for a better understanding of the development of this lethal disease that is currently without efficient treatment.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/fisiopatologia , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Células Epiteliais/citologia , Inativação Gênica , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
2.
Pancreatology ; 21(4): 677-681, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33648878

RESUMO

BACKGROUND: The MNK1 protein kinase is directly activated by the MAPK pathway and is specifically expressed in pancreatic acinar cells. Both the MNK1 kinase and the MAPK pathway are required for response to pancreatitis, suggesting that their pharmacological targeting would be of therapeutic interest. Because the mRNA cap-binding protein and translation initiation factor eIF4E is the major known MNK1 substrate, one could anticipate that the protective function of MNK1 in pancreatitis is mediated by eIF4E phosphorylation. METHODS: Acute pancreatitis was induced by the intraperitoneal administration of cerulein in wild-type mice and in transgenic mice carrying two non-phosphorylatable Eif4e alleles. The expression and phosphorylation of proteins of the MNK1-eIF4E pathway was visualized by western-blotting. The severity of pancreatitis was monitored by the measure of serum amylase levels and by histopathology and immunohistochemistry using apoptosis and immune infiltrate markers. RESULTS: Despite a strong induction in MNK1 kinase activity in both wild-type and transgenic mice, precluding eIF4E phosphorylation has no impact on the severity of acute pancreatitis. Serum amylase is equally induced in both mouse genotypes and neither acinar cell apoptosis nor immune infiltrate is exacerbated. CONCLUSION: eIF4E phosphorylation is not required for response to pancreatitis indicating that the acinar-cell-specific MNK1 kinase acts in acute pancreatitis via another substrate.


Assuntos
Fator de Iniciação 4E em Eucariotos , Pancreatite , Doença Aguda , Amilases , Animais , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Camundongos , Pancreatite/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética
3.
Gastroenterology ; 148(7): 1452-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25683115

RESUMO

BACKGROUND & AIMS: The KRAS gene is mutated in most pancreatic ductal adenocarcinomas (PDAC). Expression of this KRAS oncoprotein in mice is sufficient to initiate carcinogenesis but not progression to cancer. Activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is required for KRAS for induction and maintenance of PDAC in mice. The somatostatin receptor subtype 2 (sst2) inhibits PI3K, but sst2 expression is lost during the development of human PDAC. We investigated the effects of sst2 loss during KRAS-induced PDAC development in mice. METHODS: We analyzed tumor growth in mice that expressed the oncogenic form of KRAS (KRAS(G12D)) in pancreatic precursor cells, as well as sst2+/- and sst2-/-, and in crossed KRAS(G12D);sst2+/- and KRAS(G12D);sst2-/- mice. Pancreatic tissues and acini were collected and assessed by histologic, immunoblot, immunohistochemical, and reverse-transcription polymerase chain reaction analyses. We also compared protein levels in paraffin-embedded PDAC samples from patients vs heathy pancreatic tissues from individuals without pancreatic cancer. RESULTS: In sst2+/- mice, PI3K was activated and signaled via AKT (PKB; protein kinase B); when these mice were crossed with KRAS(G12D) mice, premalignant lesions, tumors, and lymph node metastases developed more rapidly than in KRAS(G12D) mice. In crossed KRAS(G12D);sst2+/- mice, activation of PI3K signaling via AKT resulted in activation of nuclear factor-κB (NF-κB), which increased KRAS activity and its downstream pathways, promoting initiation and progression of neoplastic lesions. We found this activation loop to be mediated by PI3K-induced production of the chemokine CXCL16. Administration of a CXCL16-neutralizing antibody to KRAS(G12D) mice reduced activation of PI3K signaling to AKT and NF-κB, blocking carcinogenesis. Levels of CXCL16 and its receptor CXCR6 were significantly higher in PDAC tissues and surrounding acini than in healthy pancreatic tissues from mice or human beings. In addition, expression of sst2 was progressively lost, involving increased PI3K activity, in mouse lesions that expressed KRAS(G12D) and progressed to PDAC. CONCLUSIONS: Based on analyses of mice, loss of sst2 from pancreatic tissues activates PI3K signaling via AKT, leading to activation of NF-κB, amplification of oncogenic KRAS signaling, increased expression of CXCL16, and pancreatic tumor formation. CXCL16 might be a therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Proliferação de Células , Quimiocina CXCL6/metabolismo , Mutação , Neoplasias Pancreáticas/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Somatostatina/deficiência , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/secundário , Estudos de Casos e Controles , Linhagem Celular Tumoral , Quimiocina CXCL16 , Quimiocinas CXC/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Metástase Linfática , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Depuradores/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Regulação para Cima
4.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35041621

RESUMO

Impaired glucose metabolism is observed in obesity and type 2 diabetes. Glucose controls gene expression through the transcription factor ChREBP in liver and adipose tissues. Mlxipl encodes 2 isoforms: ChREBPα, the full-length form (translocation into the nucleus is under the control of glucose), and ChREBPß, a constitutively nuclear shorter form. ChREBPß gene expression in white adipose tissue is strongly associated with insulin sensitivity. Here, we investigated the consequences of ChREBPß deficiency on insulin action and energy balance. ChREBPß-deficient male and female C57BL6/J and FVB/N mice were produced using CRISPR/Cas9-mediated gene editing. Unlike global ChREBP deficiency, lack of ChREBPß showed modest effects on gene expression in adipose tissues and the liver, with variations chiefly observed in brown adipose tissue. In mice fed chow and 2 types of high-fat diets, lack of ChREBPß had moderate effects on body composition and insulin sensitivity. At thermoneutrality, ChREBPß deficiency did not prevent the whitening of brown adipose tissue previously reported in total ChREBP-KO mice. These findings revealed that ChREBPß is dispensable for metabolic adaptations to nutritional and thermic challenges.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica , RNA/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Cell Mol Gastroenterol Hepatol ; 11(5): 1405-1436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482394

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS: Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS: Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS: We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Secretoma/efeitos dos fármacos , Somatostatina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/secundário , Feminino , Hormônios/farmacologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Somatostatina/farmacologia
6.
EMBO Mol Med ; 13(7): e13502, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033220

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Humanos , Macrófagos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/genética
7.
EMBO Mol Med ; 12(11): e12010, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025708

RESUMO

Cancer-associated fibroblasts (CAFs) are considered the most abundant type of stromal cells in pancreatic ductal adenocarcinoma (PDAC), playing a critical role in tumour progression and chemoresistance; however, a druggable target on CAFs has not yet been identified. Here we report that focal adhesion kinase (FAK) activity (evaluated based on 397 tyrosine phosphorylation level) in CAFs is highly increased compared to its activity in fibroblasts from healthy pancreas. Fibroblastic FAK activity is an independent prognostic marker for disease-free and overall survival of PDAC patients (cohort of 120 PDAC samples). Genetic inactivation of FAK within fibroblasts (FAK kinase-dead, KD) reduces fibrosis and immunosuppressive cell number within primary tumours and dramatically decreases tumour spread. FAK pharmacologic or genetic inactivation reduces fibroblast migration/invasion, decreases extracellular matrix (ECM) expression and deposition by CAFs, modifies ECM track generation and negatively impacts M2 macrophage polarization and migration. Thus, FAK activity within CAFs appears as an independent PDAC prognostic marker and a druggable driver of tumour cell invasion.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Fibroblastos , Humanos , Fosforilação , Prognóstico
8.
Cancer Discov ; 7(7): 716-735, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416471

RESUMO

Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.


Assuntos
Citarabina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Antígenos CD36/genética , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Citarabina/efeitos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncotarget ; 7(27): 41584-41598, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27177087

RESUMO

Pancreatic ductal adenocarcinoma (PDA) shows a rich stroma where cancer-associated fibroblasts (CAFs) represent the major cell type. CAFs are master secretors of proteins with pro-tumor features. CAF targeting remains a promising challenge for PDA, a devastating disease where treatments focusing on cancer cells have failed. We previously introduced a novel pharmacological CAF-targeting approach using the somatostatin analog SOM230 (pasireotide) that inhibits protein synthesis in CAFs, and subsequent chemoprotective features of CAF secretome. Using primary cultures of CAF isolated from human PDA resections, we here report that CAF secretome stimulates in vitro cancer cell survival, migration and invasive features, that are abolished when CAFs are treated with SOM230. Mechanistically, SOM230 inhibitory effect on CAFs depends on the somatostatin receptor subtype sst1 expressed in CAFs but not in non-activated pancreatic fibroblasts, and on protein synthesis shutdown through eiF4E-Binding Protein-1 (4E-BP1) expression decrease. We identify interleukin-6 as a SOM230-inhibited CAF-secreted effector, which stimulates cancer cell features through phosphoinositide 3-kinase activation. In vivo, mice orthotopically co-xenografted with the human pancreatic cancer MiaPaCa-2 cells and CAFs develop pancreatic tumors, on which SOM230 treatment does not inhibit growth but abrogates metastasis. Consistently, CAF secretome stimulates epithelial-to-mesenchymal transition in cancer cells, which is reversed upon CAF treatment with SOM230. Our results highlight a novel promising anti-metastatic potential for SOM230 indirectly targeting pancreatic cancer cell invasion through pharmacological inhibition of stromal CAFs.


Assuntos
Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Somatostatina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Somatostatina/farmacologia , Somatostatina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 76(15): 4394-405, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280395

RESUMO

The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR.


Assuntos
Linfangiogênese/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Camundongos , Transfecção , Nucleolina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa