Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ecol Lett ; 20(10): 1325-1336, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28871636

RESUMO

Superspreading, the phenomenon where a small proportion of individuals contribute disproportionately to new infections, has profound effects on disease dynamics. Superspreading can arise through variation in contacts, infectiousness or infectious periods. The latter has received little attention, yet it drives the dynamics of many diseases of critical public health, livestock health and conservation concern. Here, we present rare evidence of variation in infectious periods underlying a superspreading phenomenon in a free-ranging wildlife system. We detected persistent infections of Mycoplasma ovipneumoniae, the primary causative agent of pneumonia in bighorn sheep (Ovis canadensis), in a small number of older individuals that were homozygous at an immunologically relevant genetic locus. Interactions among age-structure, genetic composition and infectious periods may drive feedbacks in disease dynamics that determine the magnitude of population response to infection. Accordingly, variation in initial conditions may explain divergent population responses to infection that range from recovery to catastrophic decline and extirpation.


Assuntos
Pneumonia por Mycoplasma/veterinária , Doenças dos Ovinos/epidemiologia , Carneiro da Montanha , Animais , Animais Selvagens , Mycoplasma ovipneumoniae , Pneumonia , Ovinos
2.
J Anim Ecol ; 86(4): 908-920, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28317104

RESUMO

Understanding both contact and probability of transmission given contact are key to managing wildlife disease. However, wildlife disease research tends to focus on contact heterogeneity, in part because the probability of transmission given contact is notoriously difficult to measure. Here, we present a first step towards empirically investigating the probability of transmission given contact in free-ranging wildlife. We used measured contact networks to test whether bighorn sheep demographic states vary systematically in infectiousness or susceptibility to Mycoplasma ovipneumoniae, an agent responsible for bighorn sheep pneumonia. We built covariates using contact network metrics, demographic information and infection status, and used logistic regression to relate those covariates to lamb survival. The covariate set contained degree, a classic network metric describing node centrality, but also included covariates breaking the network metrics into subsets that differentiated between contacts with yearlings, ewes with lambs, and ewes without lambs, and animals with and without active infections. Yearlings, ewes with lambs, and ewes without lambs showed similar group membership patterns, but direct interactions involving touch occurred at a rate two orders of magnitude higher between lambs and reproductive ewes than between any classes of adults or yearlings, and one order of magnitude higher than direct interactions between multiple lambs. Although yearlings and non-reproductive bighorn ewes regularly carried M. ovipneumoniae, our models suggest that a contact with an infected reproductive ewe had approximately five times the odds of producing a lamb mortality event of an identical contact with an infected dry ewe or yearling. Consequently, management actions targeting infected animals might lead to unnecessary removal of young animals that carry pathogens but rarely transmit. This analysis demonstrates a simple logistic regression approach for testing a priori hypotheses about variation in the odds of transmission given contact for free-ranging hosts, and may be broadly applicable for investigations in wildlife disease ecology.


Assuntos
Mycoplasma ovipneumoniae/patogenicidade , Pneumonia por Mycoplasma/veterinária , Carneiro da Montanha/microbiologia , Animais , Feminino , Masculino , Pneumonia por Mycoplasma/transmissão , Dinâmica Populacional , Probabilidade , Ovinos , Doenças dos Ovinos
3.
Ecology ; 97(10): 2593-2602, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859120

RESUMO

Ecological theory suggests that pathogens are capable of regulating or limiting host population dynamics, and this relationship has been empirically established in several settings. However, although studies of childhood diseases were integral to the development of disease ecology, few studies show population limitation by a disease affecting juveniles. Here, we present empirical evidence that disease in lambs constrains population growth in bighorn sheep (Ovis canadensis) based on 45 years of population-level and 18 years of individual-level monitoring across 12 populations. While populations generally increased (λ = 1.11) prior to disease introduction, most of these same populations experienced an abrupt change in trajectory at the time of disease invasion, usually followed by stagnant-to-declining growth rates (λ = 0.98) over the next 20 years. Disease-induced juvenile mortality imposed strong constraints on population growth that were not observed prior to disease introduction, even as adult survival returned to pre-invasion levels. Simulations suggested that models including persistent disease-induced mortality in juveniles qualitatively matched observed population trajectories, whereas models that only incorporated all-age disease events did not. We use these results to argue that pathogen persistence may pose a lasting, but under-recognized, threat to host populations, particularly in cases where clinical disease manifests primarily in juveniles.


Assuntos
Doenças dos Ovinos , Carneiro da Montanha , Animais , Animais Selvagens , Dinâmica Populacional , Crescimento Demográfico , Ovinos
4.
Proc Biol Sci ; 281(1797)2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25377464

RESUMO

Group living facilitates pathogen transmission among social hosts, yet temporally stable host social organizations can actually limit transmission of some pathogens. When there are few between-subpopulation contacts for the duration of a disease event, transmission becomes localized to subpopulations. The number of per capita infectious contacts approaches the subpopulation size as pathogen infectiousness increases. Here, we illustrate that this is the case during epidemics of highly infectious pneumonia in bighorn lambs (Ovis canadensis). We classified individually marked bighorn ewes into disjoint seasonal subpopulations, and decomposed the variance in lamb survival to weaning into components associated with individual ewes, subpopulations, populations and years. During epidemics, lamb survival varied substantially more between ewe-subpopulations than across populations or years, suggesting localized pathogen transmission. This pattern of lamb survival was not observed during years when disease was absent. Additionally, group sizes in ewe-subpopulations were independent of population size, but the number of ewe-subpopulations increased with population size. Consequently, although one might reasonably assume that force of infection for this highly communicable disease scales with population size, in fact, host social behaviour modulates transmission such that disease is frequency-dependent within populations, and some groups remain protected during epidemic events.


Assuntos
Comportamento Animal , Pneumonia/veterinária , Doenças dos Ovinos/transmissão , Comportamento Social , Animais , Análise Custo-Benefício , Surtos de Doenças/veterinária , Feminino , Pneumonia/epidemiologia , Pneumonia/mortalidade , Densidade Demográfica , Estações do Ano , Ovinos , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/mortalidade , Carneiro da Montanha/microbiologia , Carneiro da Montanha/fisiologia
5.
J Anim Ecol ; 82(3): 518-28, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23398603

RESUMO

1. Bighorn sheep mortality related to pneumonia is a primary factor limiting population recovery across western North America, but management has been constrained by an incomplete understanding of the disease. We analysed patterns of pneumonia-caused mortality over 14 years in 16 interconnected bighorn sheep populations to gain insights into underlying disease processes. 2. We observed four age-structured classes of annual pneumonia mortality patterns: all-age, lamb-only, secondary all-age and adult-only. Although there was considerable variability within classes, overall they differed in persistence within and impact on populations. Years with pneumonia-induced mortality occurring simultaneously across age classes (i.e. all-age) appeared to be a consequence of pathogen invasion into a naïve population and resulted in immediate population declines. Subsequently, low recruitment due to frequent high mortality outbreaks in lambs, probably due to association with chronically infected ewes, posed a significant obstacle to population recovery. Secondary all-age events occurred in previously exposed populations when outbreaks in lambs were followed by lower rates of pneumonia-induced mortality in adults. Infrequent pneumonia events restricted to adults were usually of short duration with low mortality. 3. Acute pneumonia-induced mortality in adults was concentrated in fall and early winter around the breeding season when rams are more mobile and the sexes commingle. In contrast, mortality restricted to lambs peaked in summer when ewes and lambs were concentrated in nursery groups. 4. We detected weak synchrony in adult pneumonia between adjacent populations, but found no evidence for landscape-scale extrinsic variables as drivers of disease. 5. We demonstrate that there was a >60% probability of a disease event each year following pneumonia invasion into bighorn sheep populations. Healthy years also occurred periodically, and understanding the factors driving these apparent fade-out events may be the key to managing this disease. Our data and modelling indicate that pneumonia can have greater impacts on bighorn sheep populations than previously reported, and we present hypotheses about processes involved for testing in future investigations and management.


Assuntos
Surtos de Doenças/veterinária , Pneumonia/veterinária , Doenças dos Ovinos/mortalidade , Carneiro da Montanha , Fatores Etários , Animais , Conservação dos Recursos Naturais , Feminino , Masculino , Noroeste dos Estados Unidos/epidemiologia , Pneumonia/epidemiologia , Pneumonia/microbiologia , Pneumonia/mortalidade , Dinâmica Populacional , Estações do Ano , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia
6.
J Wildl Dis ; 59(1): 37-48, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648765

RESUMO

Low lamb recruitment can be an obstacle to bighorn sheep (Ovis canadensis) conservation and restoration. Causes of abortion and neonate loss in bighorn sheep, which may affect recruitment, are poorly understood. Toxoplasma gondii is a major cause of abortion and stillbirth in domestic small ruminants worldwide, but no reports exist documenting abortion or neonatal death in bighorn sheep attributable to toxoplasmosis. Between March 2019 and May 2021, eight fetal and neonatal bighorn lamb cadavers from four western US states (Idaho, Montana, Nebraska, and Washington) were submitted to the Washington Animal Disease Diagnostic Laboratory for postmortem examination, histologic examination, and ancillary testing to determine the cause of abortion or neonatal death. Necrotizing encephalitis characteristic of toxoplasmosis was identified histologically in six of eight cases, and T. gondii infection was confirmed by PCR in five cases with characteristic lesions. Other lesions attributable to toxoplasmosis were pneumonia (3/5 cases) and myocarditis (2/5 cases). Protozoal cysts were identified histologically within brain, lung, heart, skeletal muscle, adipose tissue, or a combination of samples in all five sheep with PCR-confirmed T. gondii infections. Seroprevalence of T. gondii ranged from 40-81% of adult females sampled in the Washington population in October and November 2018-2021, confirming high rates of exposure before detection of Toxoplasma abortions in this study. Of 1,149 bighorn sheep postmortem samples submitted to Washington Animal Disease Diagnostic Laboratory between January 2000 and May 2021, 21 of which were from fetuses or neonates, a single case of chronic toxoplasmosis was diagnosed in one adult ewe. Recent identification of Toxoplasma abortions in bighorn sheep suggests that toxoplasmosis is an underappreciated cause of reproductive loss. Abortions and neonatal mortalities should be investigated through postmortem and histologic examination, particularly in herds that are chronically small, demographically stagnant, or exhibit reproductive rates lower than expected.


Assuntos
Doenças dos Ovinos , Carneiro da Montanha , Toxoplasma , Toxoplasmose Animal , Animais , Feminino , Gravidez , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/mortalidade , Doenças dos Ovinos/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/epidemiologia , Aborto Animal/epidemiologia , Aborto Animal/microbiologia , Conservação dos Recursos Naturais , Animais Recém-Nascidos/parasitologia
7.
Emerg Infect Dis ; 18(3): 406-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22377321

RESUMO

Epizootic pneumonia of bighorn sheep is a devastating disease of uncertain etiology. To help clarify the etiology, we used culture and culture-independent methods to compare the prevalence of the bacterial respiratory pathogens Mannheimia haemolytica, Bibersteinia trehalosi, Pasteurella multocida, and Mycoplasma ovipneumoniae in lung tissue from 44 bighorn sheep from herds affected by 8 outbreaks in the western United States. M. ovipneumoniae, the only agent detected at significantly higher prevalence in animals from outbreaks (95%) than in animals from unaffected healthy populations (0%), was the most consistently detected agent and the only agent that exhibited single strain types within each outbreak. The other respiratory pathogens were frequently but inconsistently detected, as were several obligate anaerobic bacterial species, all of which might represent secondary or opportunistic infections that could contribute to disease severity. These data provide evidence that M. ovipneumoniae plays a primary role in the etiology of epizootic pneumonia of bighorn sheep.


Assuntos
Pneumonia Bacteriana/veterinária , Doenças dos Ovinos/microbiologia , Carneiro da Montanha/microbiologia , Animais , DNA Bacteriano/química , DNA Espaçador Ribossômico/genética , Mannheimia haemolytica/genética , Dados de Sequência Molecular , Mycoplasma ovipneumoniae/genética , Pasteurella multocida/genética , Filogenia , Pneumonia Bacteriana/epidemiologia , Pneumonia Bacteriana/etiologia , RNA Ribossômico 16S/genética , Ovinos , Doenças dos Ovinos/epidemiologia , Estados Unidos/epidemiologia
8.
Ecol Evol ; 11(21): 14366-14382, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765112

RESUMO

A respiratory disease epizootic at the National Bison Range (NBR) in Montana in 2016-2017 caused an 85% decline in the bighorn sheep population, documented by observations of its unmarked but individually identifiable members, the subjects of an ongoing long-term study. The index case was likely one of a small group of young bighorn sheep on a short-term exploratory foray in early summer of 2016. Disease subsequently spread through the population, with peak mortality in September and October and continuing signs of respiratory disease and sporadic mortality of all age classes through early July 2017. Body condition scores and clinical signs suggested that the disease affected ewe groups before rams, although by the end of the epizootic, ram mortality (90% of 71) exceeded ewe mortality (79% of 84). Microbiological sampling 10 years to 3 months prior to the epizootic had documented no evidence of infection or exposure to Mycoplasma ovipneumoniae at NBR, but during the epizootic, a single genetic strain of M. ovipneumoniae was detected in affected animals. Retrospective screening of domestic sheep flocks near the NBR identified the same genetic strain in one flock, presumptively the source of the epizootic infection. Evidence of fatal lamb pneumonia was observed during the first two lambing seasons following the epizootic but was absent during the third season following the death of the last identified M. ovipneumoniae carrier ewe. Monitoring of life-history traits prior to the epizootic provided no evidence that environmentally and/or demographically induced nutritional or other stress contributed to the epizootic. Furthermore, the epizootic occurred despite proactive management actions undertaken to reduce risk of disease and increase resilience in this population. This closely observed bighorn sheep epizootic uniquely illustrates the natural history of the disease including the (presumptive) source of spillover, course, severity, and eventual pathogen clearance.

9.
Ecol Evol ; 11(6): 2488-2502, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767816

RESUMO

Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population-level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family-based genome-wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome-wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.

10.
Sci Rep ; 10(1): 7082, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321990

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Ecol Evol ; 10(7): 3491-3502, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274004

RESUMO

Chronic pathogen carriage is one mechanism that allows diseases to persist in populations. We hypothesized that persistent or recurrent pneumonia in bighorn sheep (Ovis canadensis) populations may be caused by chronic carriers of Mycoplasma ovipneumoniae (Mo). Our experimental approach allowed us to address a conservation need while investigating the role of chronic carriage in disease persistence.We tested our hypothesis in two bighorn sheep populations in South Dakota, USA. We identified and removed Mo chronic carriers from the Custer State Park (treatment) population. Simultaneously, we identified carriers but did not remove them from the Rapid City population (control). We predicted removal would result in decreased pneumonia, mortality, and Mo prevalence. Both population ranges had similar habitat and predator communities but were sufficiently isolated to preclude intermixing.We classified chronic carriers as adults that consistently tested positive for Mo carriage over a 20-month sampling period (n = 2 in the treatment population; n = 2 in control population).We failed to detect Mo or pneumonia in the treatment population after chronic carrier removal, while both remained in the control. Mortality hazard for lambs was reduced by 72% in the treatment population relative to the control (CI = 36%, 91%). There was also a 41% reduction in adult mortality hazard attributable to the treatment, although this was not statistically significant (CI = 82% reduction, 34% increase). Synthesis and Applications: These results support the hypothesis that Mo is a primary causative agent of persistent or recurrent respiratory disease in bighorn sheep populations and can be maintained by a few chronic carriers. Our findings provide direction for future research and management actions aimed at controlling pneumonia in wild sheep and may apply to other diseases.

12.
J Mammal ; 101(5): 1244-1256, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33335453

RESUMO

Bighorn sheep (Ovis canadensis) can live in extremely harsh environments and subsist on submaintenance diets for much of the year. Under these conditions, energy stored as body fat serves as an essential reserve for supplementing dietary intake to meet metabolic demands of survival and reproduction. We developed equations to predict ingesta-free body fat in bighorn sheep using ultrasonography and condition scores in vivo and carcass measurements postmortem. We then used in vivo equations to investigate the relationships between body fat, pregnancy, overwinter survival, and population growth in free-ranging bighorn sheep in California and Nevada. Among 11 subpopulations that included alpine winter residents and migrants, mean ingesta-free body fat of lactating adult females during autumn ranged between 8.8% and 15.0%; mean body fat for nonlactating females ranged from 16.4% to 20.9%. In adult females, ingesta-free body fat > 7.7% during January (early in the second trimester) corresponded with a > 90% probability of pregnancy and ingesta-free body fat > 13.5% during autumn yielded a probability of overwinter survival > 90%. Mean ingesta-free body fat of lactating females in autumn was positively associated with finite rate of population increase (λ) over the subsequent year in bighorn sheep subpopulations that wintered in alpine landscapes. Bighorn sheep with ingesta-free body fat of 26% in autumn and living in alpine environments possess energy reserves sufficient to meet resting metabolism for 83 days on fat reserves alone. We demonstrated that nutritional condition can be a pervasive mechanism underlying demography in bighorn sheep and characterizes the nutritional value of their occupied ranges. Mountain sheep are capital survivors in addition to being capital breeders, and because they inhabit landscapes with extreme seasonal forage scarcity, they also can be fat reserve obligates. Quantifying nutritional condition is essential for understanding the quality of habitats, how it underpins demography, and the proximity of a population to a nutritional threshold.

13.
Sci Rep ; 9(1): 15318, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653889

RESUMO

Spillover diseases have significant consequences for human and animal health, as well as wildlife conservation. We examined spillover and transmission of the pneumonia-associated bacterium Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep, and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains could not be explained by geography, whereas some strains are spatially clustered and shared among proximate bighorn sheep populations, supporting pathogen establishment and spread following spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife populations may remain a challenge given the high strain diversity in domestic sheep and need for more comprehensive pathogen surveillance.


Assuntos
Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Cabras/microbiologia , Mycoplasma ovipneumoniae/genética , Ovinos/microbiologia , Animais , Biodiversidade , Geografia , Interações Hospedeiro-Patógeno/genética , Mycoplasma ovipneumoniae/isolamento & purificação , Filogenia , Recombinação Genética/genética , Estados Unidos
14.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180343, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31401952

RESUMO

Managing pathogen spillover at the wildlife-livestock interface is a key step towards improving global animal health, food security and wildlife conservation. However, predicting the effectiveness of management actions across host-pathogen systems with different life histories is an on-going challenge since data on intervention effectiveness are expensive to collect and results are system-specific. We developed a simulation model to explore how the efficacies of different management strategies vary according to host movement patterns and epidemic growth rates. The model suggested that fast-growing, fast-moving epidemics like avian influenza were best-managed with actions like biosecurity or containment, which limited and localized overall spillover risk. For fast-growing, slower-moving diseases like foot-and-mouth disease, depopulation or prophylactic vaccination were competitive management options. Many actions performed competitively when epidemics grew slowly and host movements were limited, and how management efficacy related to epidemic growth rate or host movement propensity depended on what objective was used to evaluate management performance. This framework offers one means of classifying and prioritizing responses to novel pathogen spillover threats, and evaluating current management actions for pathogens emerging at the wildlife-livestock interface. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Assuntos
Animais Selvagens , Doenças Transmissíveis Emergentes/veterinária , Gado , Zoonoses/prevenção & controle , Animais , Doenças Transmissíveis Emergentes/prevenção & controle
15.
Prev Vet Med ; 168: 30-38, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31097121

RESUMO

Association of Mycoplasma ovipneumoniae with pneumonia in domestic small ruminants has been described in Europe, Asia, and New Zealand but has received less attention in the United States. In 2011, the US Department of Agriculture's National Animal Health Monitoring System detected M. ovipneumoniae shedding in 88% of 453 domestic sheep operations tested in 22 states that accounted for 85.5% of US ewe inventory in 2001. We evaluated factors associated with M. ovipneumoniae infection presence and prevalence, and we compared health, lamb production, and ewe losses in infected and uninfected operations. M. ovipneumoniae detection was more common in larger operations than in smaller operations. Both likelihood of detection (at the operation level) and within-operation prevalence were higher in operations with more open management practices than in operations with more closed management practices. M. ovipneumoniae-positive operations showed significantly lower lambing rates and lower rates of lamb survival to weaning after accounting for differences in operation size and management practice. While its effect on any single rate was not particularly large, in aggregate we estimated that M. ovipneumoniae presence was associated with an approximately 4.3% reduction in annual lamb production.


Assuntos
Mycoplasma ovipneumoniae , Pneumonia por Mycoplasma/veterinária , Doenças dos Ovinos/microbiologia , Agricultura , Animais , Feminino , Pneumonia por Mycoplasma/epidemiologia , Prevalência , Fatores de Risco , Ovinos , Doenças dos Ovinos/economia , Doenças dos Ovinos/epidemiologia , Estados Unidos/epidemiologia
16.
J Clin Microbiol ; 46(2): 423-30, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18057131

RESUMO

Bronchopneumonia is a population-limiting disease in bighorn sheep in much of western North America. Previous investigators have isolated diverse bacteria from the lungs of affected sheep, but no single bacterial species is consistently present, even within single epizootics. We obtained high-quality diagnostic specimens from nine pneumonic bighorn sheep in three populations and analyzed the bacterial populations present in bronchoalveolar lavage specimens of seven by using a culture-independent method (16S rRNA gene amplification and clone library analyses). Mycoplasma ovipneumoniae was detected as a predominant member of the pneumonic lung flora in lambs with early lesions of bronchopneumonia. Specific PCR tests then revealed the consistent presence of M. ovipneumoniae in the lungs of pneumonic bighorn sheep in this study, and M. ovipneumoniae was isolated from lung specimens of five of the animals. Retrospective application of M. ovipneumoniae PCR to DNA extracted from archived formalin-fixed, paraffin-embedded lung tissues of historical adult bighorn sheep necropsy specimens supported the association of this agent with bronchopneumonia (16/34 pneumonic versus 0/17 nonpneumonic sheep were PCR positive [P < 0.001]). Similarly, a very strong association was observed between the presence of one or more M. ovipneumoniae antibody-positive animals and the occurrence of current or recent historical bronchopneumonia problems (seropositive animals detected in 9/9 versus 0/9 pneumonic and nonpneumonic populations, respectively [P < 0.001]). M. ovipneumoniae is strongly associated with bronchopneumonia in free-ranging bighorn sheep and is a candidate primary etiologic agent for this disease.


Assuntos
Broncopneumonia/veterinária , Mycoplasma ovipneumoniae/isolamento & purificação , Pneumonia por Mycoplasma/veterinária , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Líquido da Lavagem Broncoalveolar/microbiologia , Broncopneumonia/epidemiologia , Broncopneumonia/microbiologia , Broncopneumonia/patologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Pulmão/microbiologia , Dados de Sequência Molecular , América do Norte/epidemiologia , Filogenia , Pneumonia por Mycoplasma/epidemiologia , Pneumonia por Mycoplasma/patologia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Doenças dos Ovinos/patologia , Carneiro da Montanha
17.
PLoS One ; 13(1): e0192006, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29364974

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0178707.].

18.
Mol Ecol Resour ; 18(6): 1263-1281, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29870119

RESUMO

The development of high-throughput sequencing technologies is dramatically increasing the use of single nucleotide polymorphisms (SNPs) across the field of genetics, but most parentage studies of wild populations still rely on microsatellites. We developed a bioinformatic pipeline for identifying SNP panels that are informative for parentage analysis from restriction site-associated DNA sequencing (RADseq) data. This pipeline includes options for analysis with or without a reference genome, and provides methods to maximize genotyping accuracy and select sets of unlinked loci that have high statistical power. We test this pipeline on small populations of Mexican gray wolf and bighorn sheep, for which parentage analyses are expected to be challenging due to low genetic diversity and the presence of many closely related individuals. We compare the results of parentage analysis across SNP panels generated with or without the use of a reference genome, and between SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses for 30 pups from a single cohort where samples were available from 64% of possible mothers and 53% of possible fathers, and the accuracy of parentage assignments could be estimated because true identities of parents were known a priori based on field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from five cohorts where 77% of possible mothers were sampled, but true identities of parents were unknown. Analyses with and without a reference genome produced SNP panels with ≥95% parentage assignment accuracy for Mexican gray wolf, outperforming microsatellites at 78% accuracy. Maternity assignments were completely consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent with assignments from microsatellites. Accuracy and consistency of parentage analysis were not reduced when using as few as 284 SNPs for Mexican gray wolf and 142 SNPs for bighorn sheep, indicating our pipeline can be used to develop SNP genotyping assays for parentage analysis with relatively small numbers of loci.


Assuntos
Biologia Computacional/métodos , Técnicas de Genotipagem/métodos , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Animais , Genótipo , Repetições de Microssatélites , Carneiro da Montanha/classificação , Carneiro da Montanha/genética , Lobos/classificação , Lobos/genética
19.
Infect Genet Evol ; 7(1): 13-23, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16635591

RESUMO

Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated from sheep in distantly removed populations. For example, lktA sequences from P. trehalosi isolated from remote Alaskan Dall's sheep were 100% identical over a 900-nucleotide stretch to sequences determined from M. haemolytica isolated from domestic sheep in the UK. This extremely high degree of sequence similarity of lktA sequences among distinct bacterial species suggests that HGT has played a role in the evolution of lktA in wild hosts.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Variação Genética , Proteínas Hemolisinas/genética , Pasteurellaceae/genética , Pasteurelose Pneumônica/microbiologia , Alelos , Animais , Pasteurellaceae/classificação , Pasteurellaceae/patogenicidade , Pasteurelose Pneumônica/genética , Filogenia , Análise de Sequência de DNA , Doenças dos Ovinos/genética , Doenças dos Ovinos/microbiologia , Carneiro Doméstico
20.
J Zoo Wildl Med ; 38(4): 548-58, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18229860

RESUMO

A comprehensive study of a pneumonic epizootic was initiated when the first signs of disease were noted in a metapopulation of bighorn sheep inhabiting Hells Canyon, bordering Idaho, Oregon, and Washington. A total of 92 bighorn sheep were tested for etiologic agents during the following 6-mo study period. The study population included bighorn sheep believed to be the subpopulation in which disease was first noted, and these sheep were translocated to a holding facility in an effort to contain the disease (group A1, n = 72); bighorn sheep in other subpopulations (group A2) with evidence of clinical disease were captured, sampled, given antibiotics, and released (n = 8) and those that were found dead were necropsied (n = 12). Samples, including oropharyngeal and nasal swabs, and lung and liver tissue were collected from the bighorn sheep identified above. Tissue was collected at necropsy from 60 group A1 bighorn sheep that died following translocation, and samples were cultured for bacteria and viruses. Blood samples were tested for antibodies against known respiratory viruses, and histopathology was conducted on tissue samples. The major cause of death in both group A1 and group A2 bighorn sheep was a rapidly developing fibrinous bronchopneumonia. Multiple biovariants of Pasteurella were isolated from oropharyngeal and nasal samples from both groups, and Mycoplasma ovipneumonia was isolated from five group A1 oropharyngeal samples. Organisms isolated from lung tissue included Pasteurella multocida multocida a and Pasteurella trehalosi, both of which differentiated into multiple strains by restriction enzyme analysis, and parainfluenza-3 virus (PI-3). Paired serum samples revealed > fourfold increases in titers against PI-3 and bovine respiratory syncytial viruses. It was concluded that this epizootic resulted from a complex of factors including multiple potential respiratory pathogens, none of which were identified as a primary pathogen, and possible stress factors.


Assuntos
Mycoplasma ovipneumoniae/isolamento & purificação , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Pasteurella/isolamento & purificação , Pneumonia/veterinária , Doenças dos Ovinos/diagnóstico , Carneiro da Montanha , Animais , Causas de Morte , Diagnóstico Diferencial , Surtos de Doenças/veterinária , Feminino , Masculino , Pneumonia/diagnóstico , Pneumonia/epidemiologia , Pneumonia/microbiologia , Vírus Sincicial Respiratório Bovino/isolamento & purificação , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa