RESUMO
Inhibition of NF-κB inducing kinase (NIK) has been pursued as a promising therapeutic target for autoimmune disorders due to its highly regulated role in key steps of the NF-κB signaling pathway. Previously reported NIK inhibitors from our group were shown to be potent, selective, and efficacious, but had higher human dose projections than desirable for immunology indications. Herein we report the clearance-driven optimization of a NIK inhibitor guided by metabolite identification studies and structure-based drug design. This led to the identification of an azabicyclo[3.1.0]hexanone motif that attenuated in vitro and in vivo clearance while maintaining NIK potency and increasing selectivity over other kinases, resulting in a greater than ten-fold reduction in predicted human dose.
Assuntos
NF-kappa B , Transdução de Sinais , Humanos , NF-kappa B/metabolismo , Meia-Vida , Desenho de FármacosRESUMO
Discovery of novel classes of Gram-negative antibiotics with activity against multi-drug resistant infections is a critical unmet need. As an essential member of the lipoprotein biosynthetic pathway, lipoprotein signal peptidase II (LspA) is an attractive target for antibacterial drug discovery, with the natural product inhibitor globomycin offering a modestly-active starting point. Informed by structure-based design, the globomycin depsipeptide was optimized to improve activity against E. coli. Backbone modifications, together with adjustment of physicochemical properties, afforded potent compounds with good in vivo pharmacokinetic profiles. Optimized compounds such as 51 (E. coli MIC 3.1 µM) and 61 (E. coli MIC 0.78 µM) demonstrate broad spectrum activity against gram-negative pathogens and may provide opportunities for future antibiotic discovery.
Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Peptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-AtividadeRESUMO
A general and efficient method for a metal-free one-pot synthesis of highly substituted fused imidazole-containing 5,5- and 5,6-fused bicyclic heterocycles is described. Starting from commercially available substrates and reagents, the reaction proceeds through two C-N bond formations and an oxidative dehydrogenation to form highly substituted products in good to excellent yield.
RESUMO
Vismodegib (Erivedge, GDC-0449) is a first-in-class, orally administered small-molecule Hedgehog pathway inhibitor that is approved for the treatment of advanced basal cell carcinoma. Previously, we reported results from preclinical and clinical radiolabeled mass balance studies in which we determined that metabolism is the main route of vismodegib elimination. The metabolites of vismodegib are primarily the result of oxidation followed by glucuronidation. The focus of the current work is to probe the mechanisms of formation of three pyridine ring-cleaved metabolites of vismodegib, mainly M9, M13, and M18, using in vitro, ex vivo liver perfusion and in vivo rat studies. The use of stable-labeled ((13)C2,(15)N)vismodegib on the pyridine ring exhibited that the loss of carbon observed in both M9 and M13 was from the C-6 position of pyridine. Interestingly, the source of the nitrogen atom in the amide of M9 was from the pyridine. Evidence for the formation of aldehyde intermediates was observed using trapping agents as well as (18)O-water. Finally, we conclude that cytochrome P450 is involved in the formation of M9, M13, and M18 and that M3 (the major mono-oxidative metabolite) is not the precursor for the formation of these cleaved products; rather, M18 is the primary cleaved metabolite.
Assuntos
Anilidas/metabolismo , Piridinas/metabolismo , Anilidas/química , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Cães , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/enzimologia , Macaca fascicularis , Masculino , Espectrometria de Massas , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Perfusão , Piridinas/química , Ratos , Ratos Sprague-DawleyRESUMO
The lack of selective and safe in vivo IRE1α tool molecules has limited the evaluation of IRE1α as a viable target to treat multiple myeloma. Focus on improving the physicochemical properties of a literature compound by decreasing lipophilicity, molecular weight, and basicity allowed the discovery of a novel series with a favorable in vitro safety profile and good oral exposure. These efforts culminated in the identification of a potent and selective in vivo tool compound, G-5758, that was well tolerated following multiday oral administration of doses up to 500 mg/kg. G-5758 demonstrated comparable pharmacodynamic effects to induced IRE1 knockdown as measured by XBP1s levels in a multiple myeloma model (KMS-11).
Assuntos
Endorribonucleases , Mieloma Múltiplo , Proteínas Serina-Treonina Quinases , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Administração Oral , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Animais , Descoberta de Drogas , Camundongos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ratos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Técnicas de Silenciamento de Genes , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genéticaRESUMO
The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.
Assuntos
Encéfalo , Hidantoínas , Humanos , Oligodendroglia/metabolismo , Desenho de Fármacos , Hidantoínas/metabolismoRESUMO
In an effort to identify potent and isoform selective inhibitors of PI3Kδ, GNE-293 (34) was identified. Inhibitor 2 was found to induce micronuclei formation in both the MNT and HCA in vitro assays. Compounds testing negative for genotoxicity were successfully identified through modifications of the 2-benzimidazole substituent and the methylene moiety to disrupt planarity. A variety of heteroatom linkers were explored to examine their effect on potency and isoform selectivity by restricting torsional angles to favor ligand interactions with PI3Kδ's Trp760. These modifications also resulted in an improved in vivo pharmacokinetic profile.
Assuntos
Óxidos S-Cíclicos/química , Óxidos S-Cíclicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/química , Purinas/farmacologia , Animais , Linhagem Celular , Cães , Humanos , Simulação de Acoplamento Molecular , Testes de Mutagenicidade , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/toxicidade , Ratos , Relação Estrutura-AtividadeRESUMO
A potent inhibitor of PI3Kδ that is ≥ 200 fold selective for the remaining three Class I PI3K isoforms and additional kinases is described. The hypothesis for selectivity is illustrated through structure activity relationships and crystal structures of compounds bound to a K802T mutant of PI3Kγ. Pharmacokinetic data in rats and mice support the use of 3 as a useful tool compound to use for in vivo studies.
Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Triptofano/química , Animais , Sítios de Ligação , Simulação por Computador , Feminino , Injeções Intravenosas , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
A general method for the synthesis of 1,3,5-trisubstituted 1,2,4-triazoles has been developed from reaction of carboxylic acids, primary amidines, and monosubstituted hydrazines. This highly regioselective and one-pot process provides rapid access to highly diverse triazoles.
Assuntos
Amidinas/química , Ácidos Carboxílicos/química , Hidrazinas/química , Hidrazinas/síntese química , Triazóis/síntese química , Catálise , Técnicas de Química Combinatória , Estrutura MolecularRESUMO
Potent and efficacious inhibitors of the hedgehog pathway for the treatment of cancer have been prepared using the 2-pyridyl biphenyl amide scaffold common to the clinical lead GDC-0449. Analogs with polar groups in the para-position of the aryl amide ring optimized potency, had minimal CYP inhibition, and possessed good exposure in rats. Compounds 9d and 14f potently inhibited hedgehog signaling as measured by Gli1 mRNA and were found to be equivalent or more potent than GDC-0449, respectively, when studied in a Ptch(+/-) medulloblastoma allograft model, that is, highly dependent on hedgehog signaling.
Assuntos
Amidas/química , Proteínas Hedgehog/antagonistas & inibidores , Piridinas/farmacologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Hedgehog/metabolismo , Camundongos , Piridinas/química , Piridinas/farmacocinética , Ratos , Relação Estrutura-AtividadeRESUMO
Efforts to identify potent small molecule inhibitors of PI3 kinase and mTOR led to the discovery of the exceptionally potent 6-aryl morpholino thienopyrimidine 6. In an effort to reduce the melting point in analogs of 6, the thienopyrimidine was modified by the addition of a methyl group to disrupt planarity. This modification resulted in a general improvement in in vivo clearance. This discovery led to the identification of GNE-477 (8), a potent and efficacious dual PI3K/mTOR inhibitor.
Assuntos
Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Animais , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Feminino , Camundongos , Pirimidinas/química , Ratos , Serina-Treonina Quinases TOR , Tiofenos/químicaRESUMO
Starting from HTS hit 1a, X-ray co-crystallization and molecular modeling were used to design potent and selective inhibitors of PI3-kinase. Bioavailablity in this series was improved through careful modulation of physicochemical properties. Compound 12 displayed in vivo knockdown of PI3K pharmacodynamic markers such as pAKT, pPRAS40, and pS6RP in a PC3 prostate cancer xenograft model.
Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Masculino , Camundongos , Modelos Moleculares , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/enzimologia , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Ratos , Solubilidade , Relação Estrutura-AtividadeRESUMO
Clinical development of antibiotics with novel mechanisms of action to kill pathogenic bacteria is challenging, in part, due to the inevitable emergence of resistance. A phenomenon of potential clinical importance that is broadly overlooked in preclinical development is heteroresistance, an often-unstable phenotype in which subpopulations of bacterial cells show decreased antibiotic susceptibility relative to the dominant population. Here, we describe a new globomycin analog, G0790, with potent activity against the Escherichia coli type II signal peptidase LspA and uncover two novel resistance mechanisms to G0790 in the clinical uropathogenic E. coli strain CFT073. Building on the previous finding that complete deletion of Lpp, the major Gram-negative outer membrane lipoprotein, leads to globomycin resistance, we also find that an unexpectedly modest decrease in Lpp levels mediated by insertion-based disruption of regulatory elements is sufficient to confer G0790 resistance and increase sensitivity to serum killing. In addition, we describe a heteroresistance phenotype mediated by genomic amplifications of lspA that result in increased LspA levels sufficient to overcome inhibition by G0790 in culture. These genomic amplifications are highly unstable and are lost after as few as two subcultures in the absence of G0790, which places amplification-containing resistant strains at high risk of being misclassified as susceptible by routine antimicrobial susceptibility testing. In summary, our study uncovers two vastly different mechanisms of resistance to LspA inhibitors in E. coli and emphasizes the importance of considering the potential impact of unstable and heterogenous phenotypes when developing antibiotics for clinical use.IMPORTANCE Despite increasing evidence suggesting that antibiotic heteroresistance can lead to treatment failure, the significance of this phenomena in the clinic is not well understood, because many clinical antibiotic susceptibility testing approaches lack the resolution needed to reliably classify heteroresistant strains. Here we present G0790, a new globomycin analog and potent inhibitor of the Escherichia coli type II signal peptidase LspA. We demonstrate that in addition to previously known mechanisms of resistance to LspA inhibitors, unstable genomic amplifications containing lspA can lead to modest yet biologically significant increases in LspA protein levels that confer a heteroresistance phenotype.
Assuntos
Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana/genética , Lipoproteínas/metabolismo , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/enzimologia , Animais , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/farmacologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidadeRESUMO
A class of imidazoisoindole (III) heme-binding indoleamine-2,3-dioxygenase (IDO1) inhibitors were optimized via structure-based drug design into a series of tryptophan-2,3-dioxygenase (TDO)-selective inhibitors. Kynurenine pathway modulation was demonstrated in vivo, which enabled evaluation of TDO as a potential cancer immunotherapy target. As means of mitigating the risk of drug-drug interactions arising from cytochrome P450 inhibition, a novel property-based drug design parameter, herein referred to as the CYP Index, was implemented for the design of inhibitors with appreciable selectivity for TDO over CYP3A4. We anticipate the CYP Index will be a valuable design parameter for optimizing CYP inhibition of any small molecule inhibitor containing a Lewis basic motif capable of binding heme.
RESUMO
SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.
Assuntos
Amidas/química , Anilidas/química , Proteínas Hedgehog/metabolismo , Piridinas/química , Amidas/síntese química , Amidas/farmacologia , Anilidas/síntese química , Anilidas/farmacologia , Animais , Benzimidazóis/química , Carcinoma Basocelular/tratamento farmacológico , Linhagem Celular , Neoplasias Cerebelares/tratamento farmacológico , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Meduloblastoma/tratamento farmacológico , Camundongos , Camundongos Nus , Piridinas/síntese química , Piridinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We previously disclosed a series of type I 1/2 inhibitors of NF-κB inducing kinase (NIK). Inhibition of NIK by these compounds was found to be strongly dependent on the inclusion and absolute stereochemistry of a propargyl tertiary alcohol as it forms critical hydrogen bonds (H-bonds) with NIK. We report that inhibition of protein kinase D1 (PKD1) by this class of compounds is not dependent on H-bond interactions of this tertiary alcohol. This feature was leveraged in the design of highly selective inhibitors of PKD1 that no longer inhibit NIK. A structure-based hypothesis based on the position and flexibility of the α-C-helix of PKD1 vs NIK is presented.
RESUMO
Bruton's tyrosine kinase (Btk) is a nonreceptor cytoplasmic tyrosine kinase involved in B-cell and myeloid cell activation, downstream of B-cell and Fcγ receptors, respectively. Preclinical studies have indicated that inhibition of Btk activity might offer a potential therapy in autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. Here we disclose the discovery and preclinical characterization of a potent, selective, and noncovalent Btk inhibitor currently in clinical development. GDC-0853 (29) suppresses B cell- and myeloid cell-mediated components of disease and demonstrates dose-dependent activity in an in vivo rat model of inflammatory arthritis. It demonstrates highly favorable safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles in preclinical and Phase 2 studies ongoing in patients with rheumatoid arthritis, lupus, and chronic spontaneous urticaria. On the basis of its potency, selectivity, long target residence time, and noncovalent mode of inhibition, 29 has the potential to be a best-in-class Btk inhibitor for a wide range of immunological indications.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Cães , Descoberta de Drogas , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Células Madin Darby de Rim Canino , Modelos Moleculares , Estrutura Molecular , Piperazinas/farmacocinética , Piperazinas/toxicidade , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/toxicidade , Piridonas/farmacocinética , Piridonas/toxicidade , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-DawleyRESUMO
NF-κB-inducing kinase (NIK) is a protein kinase central to the noncanonical NF-κB pathway downstream from multiple TNF receptor family members, including BAFF, which has been associated with B cell survival and maturation, dendritic cell activation, secondary lymphoid organ development, and bone metabolism. We report herein the discovery of lead chemical series of NIK inhibitors that were identified through a scaffold-hopping strategy using structure-based design. Electronic and steric properties of lead compounds were modified to address glutathione conjugation and amide hydrolysis. These highly potent compounds exhibited selective inhibition of LTßR-dependent p52 translocation and transcription of NF-κB2 related genes. Compound 4f is shown to have a favorable pharmacokinetic profile across species and to inhibit BAFF-induced B cell survival in vitro and reduce splenic marginal zone B cells in vivo.
Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Quinase Induzida por NF-kappaBRESUMO
NF-κB-inducing kinase (NIK) mediates non-canonical NF-κB signaling downstream of multiple TNF family members, including BAFF, TWEAK, CD40, and OX40, which are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Here, we show that experimental lupus in NZB/W F1 mice can be treated with a highly selective and potent NIK small molecule inhibitor. Both in vitro as well as in vivo, NIK inhibition recapitulates the pharmacological effects of BAFF blockade, which is clinically efficacious in SLE. Furthermore, NIK inhibition also affects T cell parameters in the spleen and proinflammatory gene expression in the kidney, which may be attributable to inhibition of OX40 and TWEAK signaling, respectively. As a consequence, NIK inhibition results in improved survival, reduced renal pathology, and lower proteinuria scores. Collectively, our data suggest that NIK inhibition is a potential therapeutic approach for SLE.
Assuntos
Linfócitos B/efeitos dos fármacos , Rim/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Animais , Linfócitos B/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocina TWEAK/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Inflamação/genética , Subunidade p40 da Interleucina-12/efeitos dos fármacos , Subunidade p40 da Interleucina-12/imunologia , Rim/imunologia , Rim/patologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos NZB , Terapia de Alvo Molecular , Proteinúria/imunologia , Receptores OX40/metabolismo , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/imunologia , Quinase Induzida por NF-kappaBRESUMO
A direct and efficient introduction of a trifluoroethylamine motif into various heteroaromatic structures, using a readily available xanthate S-[1-(N-acetylamino)-2,2,2-trifluoroethyl]-O-ethyl dithiocarbonate (5), is reported. Medicinally relevant trifluoroethylaminated heteroarenes containing a wide range of functional groups were successfully synthesized under mild conditions. This amide isostere could be introduced into both electron-rich and -poor heteroarenes to give the desired products in one step. The beneficial effect of camphorsulfonic acid (CSA) was also demonstrated with electron-deficient heteroarenes.