RESUMO
The physiological expression of HLA-G is mainly observed in the placenta, playing an essential role in maternal-fetal tolerance. Among the HLA-G mRNA alternative transcripts, the one lacking 92 bases at the HLA-G 3' untranslated region (3'UTR), the 92bDel transcript, is more stable, is associated with increased HLA-G soluble levels, and was observed in individuals presenting a 14 bp insertion (14 bp+) at the 3'UTR. We investigated the presence of the 92bDel transcript in placenta samples, correlating its expression levels with the HLA-G polymorphisms at the 3'UTR. The 14 bp+ allele correlates with the presence of the 92bDel transcript. However, the polymorphism triggering this alternative splicing is the + 3010/C allele (rs1710, allele C). Most 14 bp+ haplotypes (UTR-2/-5/-7) present allele + 3010/C. However, 14 bp- haplotypes such as UTR-3 are also associated with + 3010/C, and the 92bDel transcript can be detected in homozygous samples for the 14 bp- allele carrying at least one copy of UTR-3. The UTR-3 haplotype is associated with alleles G*01:04 and the HLA-G lineage HG0104, which is a high-expressing lineage. The only HLA-G lineage that is not likely to produce this transcript is HG010101, associated with the + 3010/G allele. This functional difference may be advantageous, considering the high worldwide frequency of the HG010101 lineage. Therefore, HLA-G lineages are functionally distinct regarding the 92bDel transcript expression, and the 3010/C allele triggers the alternative splicing that produces this shorter and more stable transcript.
Assuntos
Antígenos HLA-G , Polimorfismo de Nucleotídeo Único , Gravidez , Feminino , Humanos , Antígenos HLA-G/genética , Regiões 3' não Traduzidas/genética , Genótipo , Nucleotídeos , Haplótipos/genética , Frequência do GeneRESUMO
Human leukocyte antigen (HLA) class I and II loci are essential elements of innate and acquired immunity. Their functions include antigen presentation to T cells leading to cellular and humoral immune responses, and modulation of NK cells. Their exceptional influence on disease outcome has now been made clear by genome-wide association studies. The exons encoding the peptide-binding groove have been the main focus for determining HLA effects on disease susceptibility/pathogenesis. However, HLA expression levels have also been implicated in disease outcome, adding another dimension to the extreme diversity of HLA that impacts variability in immune responses across individuals. To estimate HLA expression, immunogenetic studies traditionally rely on quantitative PCR (qPCR). Adoption of alternative high-throughput technologies such as RNA-seq has been hampered by technical issues due to the extreme polymorphism at HLA genes. Recently, however, multiple bioinformatic methods have been developed to accurately estimate HLA expression from RNA-seq data. This opens an exciting opportunity to quantify HLA expression in large datasets but also brings questions on whether RNA-seq results are comparable to those by qPCR. In this study, we analyze three classes of expression data for HLA class I genes for a matched set of individuals: (a) RNA-seq, (b) qPCR, and (c) cell surface HLA-C expression. We observed a moderate correlation between expression estimates from qPCR and RNA-seq for HLA-A, -B, and -C (0.2 ≤ rho ≤ 0.53). We discuss technical and biological factors which need to be accounted for when comparing quantifications for different molecular phenotypes or using different techniques.
Assuntos
Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade Classe I , Humanos , RNA-Seq , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA-C/genética , Reação em Cadeia da PolimeraseRESUMO
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that is highly expressed in papillary thyroid carcinoma (PTC). The HLA-G gene presents several functional polymorphisms distributed across the coding and regulatory regions (5'URR: 5' upstream regulatory region and 3'UTR: 3' untranslated region) and some of them may impact HLA-G expression and human malignancy. To understand the contribution of the HLA-G genetic background in PTC, we studied the HLA-G gene variability in PTC patients in association with tumor morbidity, HLA-G tissue expression, and plasma soluble (sHLA-G) levels. We evaluated 185 PTC patients and 154 healthy controls. Polymorphic sites defining coding, regulatory and extended haplotypes were characterized by sequencing analyses. HLA-G tissue expression and plasma soluble HLA-G levels were evaluated by immunohistochemistry and ELISA, respectively. Compared to the controls, the G0104a(5'URR)G*01:04:04(coding)UTR-03(3'UTR) extended haplotype was underrepresented in the PTC patients, while G0104a(5'URR)G*01:04:01(coding)UTR-03(3'UTR) was less frequent in patients with metastatic and multifocal tumors. Decreased HLA-G tissue expression and undetectable plasma sHLA-G were associated with the G010102a(5'URR)G*01:01:02:01(coding)UTR-02(3'UTR) extended haplotype. We concluded that the HLA-G variability was associated with PTC development and morbidity, as well as the magnitude of the encoded protein expression at local and systemic levels.
Assuntos
Antígenos HLA-G , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Antígenos HLA-G/genética , Regiões 3' não Traduzidas , Morbidade , Neoplasias da Glândula Tireoide/genética , Proteínas de Ligação ao GTPRESUMO
BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
RESUMO
Genome-wide associations studies have repeatedly identified the major histocompatibility complex genomic region (6p21.3) as key in immune pathologies. Researchers have also aimed to extend the biological interpretation of associations by focusing directly on human leukocyte antigen (HLA) polymorphisms and their combination as haplotypes. To circumvent the effort and high costs of HLA typing, statistical solutions have been developed to infer HLA alleles from single-nucleotide polymorphism (SNP) genotyping data. Though HLA imputation methods have been developed, no unified effort has yet been undertaken to share large and diverse imputation models, or to improve methods. By training the HIBAG software on SNP + HLA data generated by the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) to create reference panels, we highlighted the importance of (a) the number of individuals in reference panels, with a twofold increase in accuracy (from 10 to 100 individuals) and (b) the number of SNPs, with a 1.5-fold increase in accuracy (from 500 to 24,504 SNPs). Results showed improved accuracy with CAAPA compared to the African American models available in HIBAG, highlighting the need for precise population-matching. The SNP-HLA Reference Consortium is an international endeavor to gather data, enhance HLA imputation and broaden access to highly accurate imputation models for the immunogenomics community.
Assuntos
Negro ou Afro-Americano/genética , Genoma Humano/genética , Antígenos HLA/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Asma/genética , Frequência do Gene/genética , Genômica , Genótipo , Haplótipos/genética , Humanos , Disseminação de Informação , Modelos Genéticos , População Branca/genéticaRESUMO
KIR2DL4 is an important immune modulator expressed in natural killer cells; HLA-G is its main ligand. We have characterized the KIR2DL4 genetic diversity by considering the promoter, all exons, and all introns in a highly admixed Brazilian population sample and by using massively parallel sequencing. We introduce a molecular method to amplify and to sequence the complete KIR2DL4 gene. To avoid the mapping bias and genotype errors commonly observed in gene families, we have developed and validated a bioinformatic pipeline designed to minimize these errors and applied it to survey the variability of 220 individuals from the State of São Paulo, southeastern Brazil. We have also compared the KIR2DL4 genetic diversity in the Brazilian cohort with the diversity previously reported by the 1000Genomes consortium. KIR2DL4 presents high linkage disequilibrium throughout the gene, with coding sequences associated with specific promoters. There are few but divergent promoter haplotypes. We have also detected many new KIR2DL4 sequences, all bearing nucleotide exchanges in introns and encoding previously described proteins. Exons 3 and 4, which encode the external domains, are the most variable. The ancestry background influences the KIR2DL4 allele frequencies and must be considered for association studies regarding KIR2DL4.
Assuntos
Etnicidade/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Haplótipos , Polimorfismo de Nucleotídeo Único , Receptores KIR2DL4/genética , Receptores KIR2DL4/metabolismo , Adulto , Brasil , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Desequilíbrio de Ligação , Masculino , Regiões Promotoras GenéticasRESUMO
Human pigmentation is a complex trait, probably involving more than 100 genes. Predicting phenotypes using SNPs present in those genes is important for forensic purpose. For this, the HIrisPlex tool was developed for eye and hair color prediction, with both models achieving high accuracy among Europeans. Its evaluation in admixed populations is important, since they present a higher frequency of intermediate phenotypes, and HIrisPlex has demonstrated limitations in such predictions; therefore, the performance of this tool may be impaired in such populations. Here, we evaluate the set of 24 markers from the HIrisPlex system in 328 individuals from Ribeirão Preto (SP) region, predicting eye and hair color and comparing the predictions with their real phenotypes. We used the HaloPlex Target Enrichment System and MiSeq Personal Sequencer platform for massively parallel sequencing. The prediction of eye and hair color was accomplished by the HIrisPlex online tool, using the default prediction settings. Ancestry was estimated using the SNPforID 34-plex to observe if and how an individual's ancestry background would affect predictions in this admixed sample. Our sample presented major European ancestry (70.5%), followed by African (21.1%) and Native American/East Asian (8.4%). HIrisPlex presented an overall sensitivity of 0.691 for hair color prediction, with sensitivities ranging from 0.547 to 0.782. The lowest sensitivity was observed for individuals with black hair, who present a reduced European contribution (48.4%). For eye color prediction, the overall sensitivity was 0.741, with sensitivities higher than 0.85 for blue and brown eyes, although it failed in predicting intermediate eye color. Such struggle in predicting this phenotype category is in accordance with what has been seen in previous studies involving HIrisPlex. Individuals with brown eye color are more admixed, with European ancestry decreasing to 62.6%; notwithstanding that, sensitivity for brown eyes was almost 100%. Overall sensitivity increases to 0.791 when a 0.7 threshold is set, though 12.5% of the individuals become undefined. When combining eye and hair prediction, hit rates between 51.3 and 68.9% were achieved. Despite the difficulties with intermediate phenotypes, we have shown that HIrisPlex results can be very helpful when interpreted with caution.
Assuntos
Cor de Olho/genética , Genótipo , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Cor de Cabelo/genética , Fenótipo , Brasil/etnologia , Genética Forense/métodos , HumanosRESUMO
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Assuntos
Alelos , Alopecia , Antígenos HLA-B , Linfócitos T , Humanos , Alopecia/genética , Brasil , Linfócitos T/imunologia , Antígenos HLA-B/genética , Feminino , Fibrose , MasculinoRESUMO
BACKGROUND: Human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense can be diagnosed in the early hemolymphatic stage (stage 1 [S1]) or meningoencephalitic stage (stage 2 [S2]). Importantly, individuals harbouring high and specific antibody responses to Tbg antigens but negative parasitology are also diagnosed in the field (seropositive [SERO]). Whereas some develop the disease in the months following their initial diagnosis (SERO/HAT), others remain parasitologically negative for long periods (SERO) and are apparently able to control infection. Human leucocyte antigen (HLA)-G, an immunosuppressive molecule, could play a critical role in this variability of progression between infection and disease. METHODS: Soluble HLA-G (sHLA-G) was measured in plasma for patients in the SERO (n = 65), SERO/HAT (n = 14), or HAT (n = 268) group and in cerebrospinal fluid for patients in S1 (n = 55), early S2 (n = 93), or late S2 (n = 110). Associations between these different statuses and the soluble level or genetic polymorphisms of HLA-G were explored. RESULTS: Plasma sHLA-G levels were significantly higher in HAT (P = 6 × 10-7) and SERO/HAT (P = .007) than SERO patients. No difference was observed between the SERO/HAT and HAT groups. Within the HAT group, specific haplotypes (HG010102 and HG0103) displayed increased frequencies in S1 (P = .013) and late S2 (P = .036), respectively. CONCLUSIONS: These results strongly suggest the involvement of HLA-G in HAT disease progression. Importantly, high plasma sHLA-G levels in SERO patients could be predictive of subsequent disease development and could represent a serological marker to help guide therapeutic decision making. Further studies are necessary to assess the predictive nature of HLA-G and to estimate both sensitivity and specificity.
Assuntos
Antígenos HLA-G/sangue , Tripanossomíase Africana/sangue , Adulto , Biomarcadores/sangue , Progressão da Doença , Feminino , Haplótipos , Humanos , Masculino , Prognóstico , Trypanosoma brucei gambiense , Tripanossomíase Africana/fisiopatologia , Tripanossomíase Africana/prevenção & controleRESUMO
BACKGROUND: A genetic predisposition to Preterm Labor (PTL) and Preterm Premature Rupture of Membranes (PPROM) has been suggested; however the relevance of polymorphisms and ancestry to susceptibility to PTL and PPROM in different populations remains unclear. The aim of this study was to evaluate the contribution of maternal and fetal SNPs in the IL1B, IL6, IL6R, TNFA, TNFR, IL10, TLR2, TLR4, MMP9, TIMP1 and TIMP2 genes and the influence of ancestry background in the susceptibility to PTL or PPROM in Brazilian women. METHODS: Case-control study conducted at a tertiary hospital in São Paulo State, Brazil. We included women with PTL or PPROM and their babies (PTL: 136 women and 88 babies; PPROM: 65 women and 44 babies). Control group included 402 mother-babies pairs of term deliveries. Oral swabs were collected for identification of AIMs by fragment analysis and SNPs by Taqman® SNP Genotyping Assays and PCR. Linkage Disequilibrium and Hardy-Weinberg proportions were evaluated using Genepop 3.4. Haplotypes were inferred using the PHASE algorithm. Allele, genotype and haplotype frequencies were compared by Fisher's exact test or χ (2) and Odds Ratio. Logistic regression was performed. Clinical and sociodemographic data were analyzed by Fisher's exact test and Mann-Whitney. RESULTS: PTL was associated with European ancestry and smoking while African ancestry was protective. The fetal alleles IL10-592C (rs800872) and IL10-819C (rs1800871) were also associated with PTL and the maternal haplotype TNFA-308G-238A was protective. Maternal presence of IL10-1082G (rs1800896) and TLR2A (rs4696480) alleles increased the risk for PPROM while TNFA-238A (rs361525) was protective. Family history of PTL/PPROM was higher in cases, and time to delivery was influenced by IL1B-31T (rs1143627) and TLR4-299G (rs4986790). CONCLUSION: There is an association between European ancestry and smoking and PTL in our Brazilian population sample. The presence of maternal or fetal alleles that modify the inflammatory response increase the susceptibility to PTL and PPROM. The family history of PTL/PPROM reinforces a role for genetic polymorphisms in susceptibility to these outcomes.
Assuntos
Citocinas/genética , Ruptura Prematura de Membranas Fetais/genética , Trabalho de Parto Prematuro/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , População Negra/genética , Brasil , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Haplótipos , Humanos , Recém-Nascido , Interleucina-10/genética , Gravidez , Fumar/efeitos adversos , Receptor 2 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , População Branca/genética , Adulto JovemRESUMO
The AluyHG element belongs to the AluYb8 subfamily. It is a polymorphic insertion, located approximately 20 kb from the HLA-G 3'-untranslated region (3'-UTR), which has been used for evolution studies because it exhibits identity for descendants and it is still polymorphic in the human genome. To understand the evolutionary mechanisms acting on HLA-G, we evaluated the presence or absence of the AluyHG element, associating this variable site with others observed at HLA-G coding, 3'-UTR, or both regions in four distinct populations (Brazilian, French, Congolese, and Senegalese). The results were compared with the 1000Genomes Consortium data. The worldwide AluyHG frequencies showed an increment, starting lower in Africa and increasing following distance and time of human dispersion out of Africa. The same haplotype pattern was observed in all populations, indicating that most of the HLA-G haplotypes already detected were originated earlier in Africa, before Homo sapiens dispersion. The AluyHG insertion was associated with the G*01:01:01:01/UTR-1 haplotype, with rare recombinants. Despite its high frequency in worldwide populations, the G*01:01:01:01/UTR-1 haplotype should be very recent. The low frequency of recombinants indicates that the rate of recombination at the HLA-G gene is very low.
Assuntos
Regiões 3' não Traduzidas/genética , Elementos Alu/genética , Evolução Molecular , Antígenos HLA-G/genética , Povo Asiático/genética , População Negra/genética , Brasil , Estudos de Coortes , Frequência do Gene , Variação Genética , Haplótipos , Humanos , Filogenia , População Branca/genéticaRESUMO
The SNP-HLA Reference Consortium (SHLARC), a component of the 18th International HLA and Immunogenetics Workshop, is aimed at collecting diverse and extensive human leukocyte antigen (HLA) data to create custom reference panels and enhance HLA imputation techniques. Genome-wide association studies (GWAS) have significantly contributed to identifying genetic associations with various diseases. The HLA genomic region has emerged as the top locus in GWAS, particularly in immune-related disorders. However, the limited information provided by single nucleotide polymorphisms (SNPs), the hallmark of GWAS, poses challenges, especially in the HLA region, where strong linkage disequilibrium (LD) spans several megabases. HLA imputation techniques have been developed using statistical inference in response to these challenges. These techniques enable the prediction of HLA alleles from genotyped GWAS SNPs. Here we present the SHLARC activities, a collaborative effort to create extensive, and multi-ethnic reference panels to enhance HLA imputation accuracy.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Imunogenética , Alelos , Antígenos HLA/genética , GenótipoRESUMO
Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population.
Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Alelos , Genótipo , Antígenos HLA-B , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Insertion/deletion polymorphisms, or InDels, are widely present in the human genome. They have been considered as potential markers for forensic analysis because they can be genotyped using the CE platform and compatible typing techniques used in forensic laboratories. Additionally, InDels have lower mutation rates and often short amplicon sizes, making them ideal for detecting degraded samples. However, most InDels are bi-allelic; therefore, their discrimination power is relatively low. A new set of genetic marker called multi-InDels was reported to improve InDel's informativeness. Multi-InDel markers are generally designated as microhaplotypes encompassing two or more InDels within a short distance, usually less than 200â¯bp. In this study, we evaluated the applicability of three previously proposed panels of multi-InDel markers, designed for Asian populations, for human identification in Brazil. We assessed all the multi-InDel markers using high-coverage whole-genome sequencing data from a census-based cohort of 1171 Brazilians residing in São Paulo, the largest Brazilian capital. The results showed that most markers are informative for Brazilian individuals since they present more than three frequent haplotypes with different sizes. However, most markers are prone to amplification/sequencing errors due to repetitive or low-complexity regions. Among the tested panels, the one from Huang et al. (2014) is the most promising for forensic use in Brazil, with a combined match probability and cumulative power of exclusion of 4.92 ×10-14 and 0.9991, respectively. Nevertheless, these values are low compared to the ones obtained with CODIS STRs (short tandem repeats) and larger SNP (single nucleotide polymorphisms) panels. Therefore, new attempts to scan the human genome for highly polymorphic multi-InDel markers are still necessary to obtain a suitable panel of multi-InDels for worldwide populations.
RESUMO
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
RESUMO
The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.
Assuntos
Alelos , Etnicidade , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Humanos , Brasil , Etnicidade/genética , Antígenos HLA/genética , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla/métodos , Genótipo , Genética Populacional/métodos , Antígenos de Histocompatibilidade Classe I/genética , Biologia Computacional/métodosRESUMO
We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with ß2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.
Assuntos
Antígenos HLA-G , Proteínas de Checkpoint Imunológico , Humanos , Antígenos HLA-G/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Proteínas de Checkpoint Imunológico/genética , Genes MHC Classe I , Isoformas de Proteínas/genéticaRESUMO
Vitiligo is the most frequent cause of depigmentation worldwide. Genetic association studies have discovered about 50 loci associated with disease, many with immunological functions. Among them is HLA-G, which modulates immunity by interacting with specific inhibitory receptors, mainly LILRB1 and LILRB2. Here we investigated the LILRB1 and LILRB2 association with vitiligo risk and evaluated the possible role of interactions between HLA-G and its receptors in this pathogenesis. We tested the association of the polymorphisms of HLA-G, LILRB1, and LILRB2 with vitiligo using logistic regression along with adjustment by ancestry. Further, methods based on the multifactor dimensionality reduction (MDR) approach (MDR v.3.0.2, GMDR v.0.9, and MB-MDR) were used to detect potential epistatic interactions between polymorphisms from the three genes. An interaction involving rs9380142 and rs2114511 polymorphisms was identified by all methods used. The polymorphism rs9380142 is an HLA-G 3'UTR variant (+3187) with a well-established role in mRNA stability. The polymorphism rs2114511 is located in the exonic region of LILRB1. Although no association involving this SNP has been reported, ChIP-Seq experiments have identified this position as an EBF1 binding site. These results highlight the role of an epistatic interaction between HLA-G and LILRB1 in vitiligo pathogenesis.