Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsy Behav ; 71(Pt B): 243-249, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26440280

RESUMO

Accumulating evidence from different animal models has contributed to the understanding of the bidirectional comorbidity associations between the epileptic condition and behavioral abnormalities. A strain of animals inbred to enhance seizure predisposition to high-intensity sound stimulation, the Wistar audiogenic rat (WAR), underwent several behavioral tests: forced swim test (FST), open-field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), social preference (SP), marble burying test (MBT), inhibitory avoidance (IAT), and two-way active avoidance (TWAA). The choice of tests aimed to investigate the correlation between underlying circuits believed to be participating in both WAR's innate susceptibility to sound-triggered seizures and the neurobiological substrates associated with test performance. Comparing WAR with its Wistar counterpart (i.e., resistant to audiogenic seizures) showed that WARs present behavioral despair traits (e.g., increased FST immobility) but no evidence of anhedonic behavior (e.g., increased sucrose consumption in SPT) or social impairment (e.g., no difference regarding juvenile exploration in SP). In addition, tests suggested that WARs are unable to properly evaluate degrees of aversiveness (e.g., performance on OFT, EPM, MBT, IAT, and TWAA). The particularities of the WAR model opens new venues to further untangle the neurobiology underlying the co-morbidity of behavioral disorders and epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Aprendizagem da Esquiva , Modelos Animais de Doenças , Epilepsia Reflexa/psicologia , Predisposição Genética para Doença/psicologia , Convulsões/psicologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Suscetibilidade a Doenças/psicologia , Epilepsia Reflexa/genética , Epilepsia Reflexa/fisiopatologia , Predisposição Genética para Doença/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/fisiopatologia
2.
Cereb Cortex ; 26(5): 1866-1877, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609241

RESUMO

Inputting information to the brain through direct electrical microstimulation must consider how underlying neural networks encode information. One unexplored possibility is that a single electrode delivering temporally coded stimuli, mimicking an asynchronous serial communication port to the brain, can trigger the emergence of different brain states. This work used a discriminative fear-conditioning paradigm in rodents in which 2 temporally coded microstimulation patterns were targeted at the amygdaloid complex. Each stimulus was a binary-coded "word" made up of 10 ms bins, with 1's representing a single pulse stimulus: A-1001111001 and B-1110000111. During 3 consecutive retention tests (i.e., day-word: 1-B; 2-A, and 3-B), only binary-coded words previously paired with a foot-electroshock elicited proper aversive behavior. To determine the neural substrates recruited by the different stimulation patterns, c-Fos expression was evaluated 90 min after the last retention test. Animals conditioned to word-B, after stimulation with word-B, demonstrated increased hypothalamic c-Fos staining. Animals conditioned to word-A, however, showed increased prefrontal c-Fos labeling. In addition, prefrontal-cortex and hypothalamic c-Fos staining for, respectively, word-B- and word-A-conditioned animals, was not different than that of an unpaired control group. Our results suggest that, depending on the valence acquired from previous learning, temporally coded microstimulation activates distinct neural networks and associated behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Estimulação Elétrica/métodos , Neurônios/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/fisiologia , Eletrochoque , Medo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
3.
Neurosci Lett ; 597: 154-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25936592

RESUMO

Increasing body of evidence suggests that inflammatory and neurotrophic factors might be important for epileptogenesis. Most animal studies demonstrated altered levels of these mediators in drug-induced models of seizures and epilepsy. In the present study, we investigated the production of cytokines and a neurotrophin in the brain of Wistar Audiogenic Rats (WAR), a genetic model of epilepsy, stimulated with high-intensity sound. Four hours after stimulation, animals were decapitated and the hippocampus, inferior colliculus, striatum and cortex were removed for evaluation of the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and brain derived neurotrophic factor (BDNF). All the cytokines and BDNF levels were increased in the cortex. Increased levels of TNF-α and IL-6 were also observed in the striatum. Finally, TNF-α also increased in the inferior colliculus after the seizures induced by high-intensity sound. Although different studies have demonstrated that the levels of cytokines and BDNF increase in animal models of epilepsy induced by chemical stimuli, we provided here evidence that these mediators are also increased in WAR, a genetic model of epilepsy. Thus, the observed increase in these mediators might be involved in the pathophysiology of epilepsy.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Convulsões/metabolismo , Estimulação Acústica , Animais , Encéfalo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratos Wistar , Convulsões/etiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa