RESUMO
This paper aims to implement a laser-induced ultrasound imaging reconstruction method based on the delay-and-sum beamforming through the synthetic aperture focusing technique (SAFT) for a circular scanning, performed with a tomograph that had one acoustic sensor and a system that rotates the sample around a fixed axis. The proposed method, called the Single-sensor Scanning Synthetic Aperture Focusing Technique, considers the size of the sensor and the detection procedure inside the SAFT's algebra. This image reconstruction method was evaluated numerically, using the Green function for the laser-induced ultrasound wave equation to generate a forward problem, and experimentally, using a solid object of polylactic acid, and a Sprague-Dawley rat heart located in a tissue-mimicking phantom. The resulting images were compared to those obtained from the time reversal and the conventional delay-and-sum reconstruction algorithms. The presented method removes the sidelobe artifacts and the comet tail sign, which produces a more distinguishable target on the image. In addition, the proposed method has a faster performance and lower computational load. The implementation of this method in photoacoustic microscopy techniques for image reconstruction is discussed.
RESUMO
Nanoplasmonic materials concentrate light in specific regions of dramatic electromagnetic enhancement: hot spots. Such regions can be employed to perform single molecule detection via surface-enhanced Raman spectroscopy. However, this phenomenon is challenging since hot spots are expected to be highly intense/abundant and positioning of molecules within such hot spots is crucial to manage with ultrasensitive SERS. Herein, it is discovered that a 3D plasmonic web embedded within a biohybrid (3D-POWER) exhibits plasmonic transmission, spontaneously absorbs the analyte, and meets these so much needed criteria in ultrasensitive SERS. 3D-POWER is built with nanopaper and self-assembled layers of graphene oxide and gold nanorods. According to in silico experiments, 3D-POWER captures light in a small region and performs plasmonic field transmission in a surrounding volume, thereby activating a plasmonic web throughout the simulated volume. The study also provides experimental evidence supporting the plasmonic field transport ability of 3D power, which operates as a SERS signal carrier (even beyond the apparatus field of view), and the ultrasensitive behavior of this ecofriendly and flexible material facilitating yoctomolar limit of detection. Besides, 3D-POWER is proven useful in food and biofluids analysis. It is foreseen that 3D-POWER can be employed as a valuable platform in (bio)analytical applications.
RESUMO
Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.