Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769076

RESUMO

Thyroid cancer is the most common endocrine cancer, and its incidence is increasing in many countries around the world. Among thyroid cancers, the papillary thyroid cancer (PTC) histotype is particularly prevalent. A small percentage of papillary tumors is associated with metastases and aggressive behavior due to de-differentiation obtained through the epithelial-mesenchymal transition (EMT) by which epithelial thyroid cells acquire a fibroblast-like morphology, reduce cellular adhesion, increase motility and expression of mesenchymal proteins. The tumor microenvironment plays an important role in promoting an aggressive phenotype through hypoxia and the secretion of HMGB1 and other factors. Hypoxia has been shown to drastically change the tumor cell phenotype and has been associated with increasing metastatic and migratory behavior. Cells transfer information to neighboring cells or distant locations by releasing extracellular membrane vesicles (EVs) that contain key molecules, such as mRNAs, microRNAs (miRNAs), and proteins, that are able to modify protein expression in recipient cells. In this study, we investigated the potential role of EVs released by the anaplastic cancer cell line CAL-62 in inducing a malignant phenotype in a papillary cancer cell line (BCPAP).


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Glândula Tireoide , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/patologia , Fenótipo , Linhagem Celular Tumoral , Movimento Celular , Microambiente Tumoral
2.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447100

RESUMO

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Assuntos
Senescência Celular/fisiologia , Histonas/fisiologia , Aneuploidia , Nucléolo Celular/metabolismo , Criança , Cromatina/metabolismo , Metilação de DNA , Feminino , Histonas/química , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
3.
J Transl Med ; 20(1): 469, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243798

RESUMO

BACKGROUND: Melanoma is the deadliest form of skin cancer and metastatic disease is associated with a significant survival rate drop. There is an urgent need for consistent tumor biomarkers to scale precision medicine and reduce cancer mortality. Here, we aimed to identify a melanoma-specific circulating microRNA signature and assess its value as a diagnostic tool. METHODS: The study consisted of a discovery phase and two validation phases. Circulating plasma extracellular vesicles (pEV) associated microRNA profiles were obtained from a discovery cohort of metastatic melanoma patients and normal subjects as controls. A pEV-microRNA signature was obtained using a LASSO penalized logistic regression model. The pEV-microRNA signature was subsequently validated both in a publicly available dataset and in an independent internal cohort. RESULTS: We identified and validated in three independent cohorts a panel of melanoma-specific circulating microRNAs that showed high accuracy in differentiating melanoma patients from healthy subjects with an area under the curve (AUC) of 1.00, 0.94 and 0.75 respectively. Investigation of the function of the pEV-microRNA signature evidenced their possible immune suppressive role in melanoma patients. CONCLUSIONS: We demonstrate that a blood test based on circulating microRNAs can non-invasively detect melanoma, offering a novel diagnostic tool for improving standard care. Moreover, we revealed an immune suppressive role for melanoma pEV-microRNAs.


Assuntos
MicroRNA Circulante , Melanoma , MicroRNAs , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Perfilação da Expressão Gênica , Humanos , Biópsia Líquida , Melanoma/diagnóstico , Melanoma/genética , MicroRNAs/genética
4.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457094

RESUMO

Gestational diabetes mellitus (GDM) causes both maternal and fetal adverse outcomes. The deregulation of microRNAs (miRNAs) in GDM suggests their involvement in GDM pathogenesis and complications. Exosomes are extracellular vesicles (EVs) of endosomal origin, released via exocytosis into the extracellular compartment. Through EVs, miRNAs are delivered in distant target cells and are able to affect gene expression. In this study, miRNA expression was analyzed to find new miRNAs that could improve GDM classification and molecular characterization. MiRNA were profiled in total plasma and EVs in GDM patients and normal glucose tolerance (NGT) women. Samples were collected at third trimester of gestation from two diabetes centers. MiRNA expression was profiled in a discovery cohort using the multiplexed NanoString nCounter Human v3 miRNA. Validation analysis was performed in a second independent cohort using RT-qPCR. A set of miRNAs resulted to be differentially expressed (DE) in total plasma and EVs in GDM. Among them, total plasma miR-222-3p and miR-409-3p were validated in the independent cohort. MiR-222-3p levels correlated with fasting plasma glucose (FPG) (p < 0.001) and birth weight (p = 0.012), whereas miR-409-3p expression correlated with FPG (p < 0.001) and inversely with gestational age (p = 0.001). The major validated target genes of the deregulated miRNAs were consistently linked to type 2 diabetes and GDM pathophysiology. MiR-222-3p and miR-409-3p are two circulating biomarkers that could improve GDM classification power and act in the context of the molecular events leading to the metabolic alterations observed in GDM.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , MicroRNAs , Biomarcadores , Diabetes Gestacional/genética , Feminino , Homeostase/genética , Humanos , MicroRNAs/metabolismo , Gravidez
5.
Int J Cancer ; 148(10): 2522-2534, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320972

RESUMO

Pediatric low-grade gliomas (pLGGs) are the most frequent brain tumor in children. Adjuvant treatment, consisting in chemotherapy and radiotherapy, is often necessary if a complete surgical resection cannot be obtained. Traditional treatment approaches result in a significant long-term morbidity, with a detrimental impact on quality of life. Dysregulation of the mitogen-activated protein kinase (MAPK) pathway is the molecular hallmark of pLGGs and hyperactivation of the downstream mammalian target of rapamycin (mTOR) pathway is frequently observed. We report clinical and radiological results of front-line treatment with everolimus in 10 consecutive patients diagnosed with m-TOR positive pLGGs at the Bambino Gesù Children's Hospital in Rome, Italy. Median duration of treatment was 19 months (range from 13-60). Brain magnetic resonance imaging showed stable disease in 7 patients, partial response in 1 and disease progression in 2. Therapy-related adverse events were always reversible after dose reduction or temporary treatment interruption. To the best of our knowledge, this is the first report of everolimus treatment for chemo- and radiotherapy-naïve children with pLGG. Our results provide preliminary support, despite low sample size, for the use of everolimus as target therapy in pLGG showing lack of progression with a manageable toxicity profile.

6.
Childs Nerv Syst ; 37(3): 771-778, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32162034

RESUMO

PURPOSE: Pediatric low-grade gliomas (pLGGs), the most frequent pediatric brain tumors, include different entities harboring distinct histological and molecular features. A major limitation in the development of treatments for these tumors is the absence of reliable in vitro models that would allow a better understanding of the molecular mechanisms that support their growth. Surgical excision is the primary treatment method and the extent of resection represents one of the strongest prognostic factors. pLGGs that cannot be completely resected are prone to recur and associated with relapses and extensive morbidities, thus remaining a major clinical challenge. METHODS: We established a protocol to successfully derive primary patient-derived pLGG cells and to fully characterize them from a molecular point of view. RESULTS: Primary patients-derived pLGG cells were extensively analyzed in order to confirm their reliability as cellular models. Specifically, we evaluated the growth rate, senescence, and molecular features, such as BRAF mutational status, methylation, and protein expression profile. CONCLUSION: This study extensively describes pLGG primary cellular models in terms of isolation, culture method, and molecular characterization that can be used to investigate pLGG biology.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Criança , Glioma/genética , Humanos , Mutação/genética , Recidiva Local de Neoplasia , Reprodutibilidade dos Testes
7.
BMC Cancer ; 20(1): 129, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066410

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a heterogeneous disease with a complex biology and a wide number of altered genes such as BRAF, KRAS and PIK3CA. Advances with new-targeted therapies have been achieved and available treating options have prolonged patient's survival. However, BRAF-mutated CRC patients remain unresponsive to available therapies with RAF inhibitors (RAFi) alone or combined with ErbB inhibitors (ErbBi). These unmet needs require further exploitation of oncogenic signaling in order to set up individualized treatments. METHODS: To this end, we tested the efficacy of single agent or combined treatments using the BRAFi, vemurafenib and two different ErbBi: panitumumab and afatinib in CRC cells characterized by different molecular phenotypes. RESULTS: Combination strategies with BRAFi and ErbBi achieved a better response in BRAFV600E mutated cells expressing high levels of ErbB2. CONCLUSIONS: Our findings support the importance of ErbB2 evaluation in BRAF-mutated CRC patients and its role as a positive predictor factor of response to BRAFi/ErbBi combination.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Afatinib/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Terapia de Alvo Molecular/métodos , Panitumumabe/administração & dosagem , Receptor ErbB-2/metabolismo , Vemurafenib/administração & dosagem
8.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512799

RESUMO

Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the second or third trimester of pregnancy. GDM can lead to short-term and long-term complications both in the mother and in the offspring. Diagnosing and treating this condition is therefore of great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved in metabolic processes and their dysregulated expression has been reported in several pathological contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to insulin resistance and ß-cell dysfunction, the key pathophysiological features of GDM. Furthermore, significant associations between altered ncRNA profiles and GDM-related complications, such as macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the expression of target genes in the offspring, possibly contributing to the development of long-term GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects and the pathophysiological implications of this complex relationship.


Assuntos
Diabetes Gestacional/etiologia , Suscetibilidade a Doenças , Complicações na Gravidez , RNA não Traduzido/genética , Animais , Biomarcadores , Ácidos Nucleicos Livres , Epigênese Genética , Feminino , Humanos , Placenta/metabolismo , Gravidez
9.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096798

RESUMO

Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.


Assuntos
Proteínas Hedgehog/genética , Meduloblastoma/genética , MicroRNAs/genética , Transcriptoma/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Meduloblastoma/patologia , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Receptor Patched-1/genética , Fosfatidilinositol 3-Quinases , Transdução de Sinais/genética
10.
BMC Cancer ; 17(1): 488, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716052

RESUMO

BACKGROUND: Aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326. METHODS: We evaluated ß-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays. RESULTS: Low levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation. CONCLUSIONS: Our results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal.


Assuntos
Meduloblastoma/genética , MicroRNAs/genética , Proteína GLI1 em Dedos de Zinco/genética , beta-Arrestina 1/genética , Autorrenovação Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética
11.
Int J Mol Sci ; 18(12)2017 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-29258209

RESUMO

The mechanisms by which microRNAs control pediatric high-grade gliomas (pHGGs) have yet to be fully elucidated. Our studies of patient-derived pHGG tissues and of the pHGG cell line KNS42 revealed down-regulation in these tumors of three microRNAs, specifically miR-107, miR-181c, and miR-29a-3p. This down-regulation increases the proliferation of KNS42 cells by de-repressing expression of the Notch2 receptor (Notch2), a validated target of miR-107 and miR-181c and a putative target of miR-29a-3p. Inhibition (either pharmacologic or genetic) of Notch2 or re-expression of the implicated microRNAs (all three combined but also individually) significantly reduced KNS42 cell proliferation. These findings suggest that Notch2 pathway activation plays a critical role in pHGGs growth and reveal a direct epigenetic mechanism that controls Notch2 expression, which could potentially be targeted by novel forms of therapy for these childhood tumors characterized by high-morbidity and high-mortality.


Assuntos
Glioma/genética , Glioma/metabolismo , MicroRNAs/metabolismo , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/patologia , Humanos , MicroRNAs/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Magn Reson Med ; 73(6): 2296-305, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25045880

RESUMO

PURPOSE: The correlation between glutamine metabolism and oncogene expression in cancers has led to a renewed interest in the role of glutamine in cancer cell survival. Hyperpolarized [5-(13) C]glutamine is evaluated as a potential biomarker for noninvasive metabolic measurements of drug response in prostate cancer cells. METHODS: Hyperpolarized [5-(13) C]glutamine is used to measure glutamine metabolism in two prostate cancer cell lines (PC3 and DU145) before and after treatment with the two natural anticancer drugs resveratrol and sulforaphane. An invasive biochemical assay simulating the hyperpolarized experiment is used to independently quantify glutamine metabolism. RESULTS: Glutamine metabolism is found to be 4 times higher in the more glutaminolytic DU145 cells compared with PC3 cells under proliferating growth conditions by using hyperpolarized [5-(13) C]glutamine as a noninvasive probe. A significant decrease in glutamine metabolism occurs upon apoptotic response to treatment with resveratrol and sulforaphane. CONCLUSION: Hyperpolarized NMR using [5-(13) C]glutamine as a probe permits the noninvasive observation of glutaminolysis in different cell lines and under different treatment conditions. Hyperpolarized [5-(13) C]glutamine metabolism thus is a promising biomarker for the noninvasive detection of tumor response to treatment, as it directly monitors one of the hallmarks in cancer metabolism - glutaminolysis - in living cells.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Glutamina/metabolismo , Isotiocianatos/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Estilbenos/farmacologia , Biomarcadores Tumorais/metabolismo , Isótopos de Carbono , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Meios de Contraste , Ensaio de Imunoadsorção Enzimática , Gadolínio , Compostos Heterocíclicos , Humanos , Técnicas In Vitro , Masculino , Compostos Organometálicos , Fenótipo , Resveratrol , Sulfóxidos
13.
Eur Urol Oncol ; 7(1): 73-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37270379

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most diagnosed cancer in men, with an increasing need to integrate noninvasive imaging and circulating microRNAs beyond prostate-specific antigen for screening and early detection. OBJECTIVE: To validate magnetic resonance imaging (MRI) biomarkers and circulating microRNAs as triage tests for patients directed to prostate biopsy, and to test different diagnostic pathways to compare their performance on patients' outcome, in terms of unnecessary biopsy avoidance. DESIGN, SETTING, AND PARTICIPANTS: A prospective single-center cohort study, enrolling patients with PCa suspicion who underwent MRI, MRI-directed fusion biopsy (MRDB), and circulating microRNAs, was conducted. A network-based analysis was used to identify MRI biomarkers and microRNA drivers of clinically significant PCa. INTERVENTION: MRI, MRDB, and blood sampling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The decision curve analysis was exploited to assess the performance of the proposed diagnostic pathways and to quantify their benefit in terms of biopsy avoidance. RESULTS AND LIMITATIONS: Overall, 261 men were enrolled and underwent MRDB for PCa detection. A total of 178 patients represented the entire cohort: 55 (30.9%) were negative for PCa, 39 (21.9%) had grade group (GG) 1 PCa, and 84 (47.2%) had GG >1 PCa. The proposed integrated pathway, including clinical data, MRI biomarkers, and microRNAs, provided the best net benefit with a biopsy avoidance rate of about 20% at a low disease probability. The main limitation is the monocentric design in a referral center. CONCLUSIONS: The integrated pathway represents a validated model that sees MRI biomarkers and microRNAs as a prebiopsy triage of patients at a risk for clinically significant PCa. The proposed pathway showed the highest net benefit in terms of unnecessary biopsy avoidance. PATIENT SUMMARY: The proposed integrated pathway for early detection of prostate cancer (PCa) allows accurate patient allocation to biopsy and patients' stratification into risk group categories, reducing overdiagnosis and overtreatment of clinically insignificant PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Estudos de Coortes , Detecção Precoce de Câncer , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Imageamento por Ressonância Magnética/métodos , Biópsia Guiada por Imagem/métodos
14.
Endocrine ; 83(3): 798-809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979099

RESUMO

PURPOSE: Breast cancer (BC) is the most common malignancy that affects women, and it is, to date, their leading cause of death. Luminal A molecular subtype accounts for 40% of BC and is characterized by hormone receptors positive/human epidermal growth factor 2 expression and current treatment consists of surgery plus aromatase inhibitor therapy. Interestingly, several studies demonstrated that the heavy metal cadmium (Cd), classified as a group 1 human carcinogen and widely spread in the environment, exerts estrogen-like activities in several tissues and suggested an intriguing relationship between increased Cd exposure and BC incidence. Thus, aim of this study was to evaluate effects of Cd on Luminal A BC estrogen receptor (ER) positive/progesterone receptor positive cell models in vitro to characterize the mechanism(s) involved in breast cell homeostasis disruption. METHODS: T47D and MCF7 were exposed to Cd (0.5-1 µM) for 6-24 h to evaluate potential alterations in: cells viability, steroid receptors and intracellular signaling by western blot. Moreover, we evaluated the expression of inflammatory cytokines interleukin by RT-PCR. RESULTS: Our results showed a significant induction of androgen receptor (AR) and an increased AR/ER ratio. Further, Cd exposure increased pro-inflammatory cytokines interleukin (IL)6, IL8 and tumor necrosis factor α levels. Finally, as previously demonstrated by our group, Cd alters pathways such as mitogen-activated protein kinase family and protein kinase B. CONCLUSION: In conclusion, our study demonstrates that Cd modifies the expression and pattern of ERs and AR in BC cell lines, suggesting an alteration of BC cells homeostasis, likely predisposing to a carcinogenetic microenvironment.


Assuntos
Neoplasias da Mama , Disruptores Endócrinos , Feminino , Humanos , Neoplasias da Mama/patologia , Cádmio/toxicidade , Disruptores Endócrinos/farmacologia , Androgênios/farmacologia , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Citocinas , Estrogênios , Interleucina-6 , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839827

RESUMO

Primary malignant brain tumors are the most common solid neoplasm in childhood. Despite recent advances, many children affected by aggressive or metastatic brain tumors still present poor prognosis, therefore the development of more effective therapies is urgent. Cancer stem cells (CSCs) have been discovered and isolated in both pediatric and adult patients with brain tumors (e.g., medulloblastoma, gliomas and ependymoma). CSCs are a small clonal population of cancer cells responsible for brain tumor initiation, maintenance and progression, displaying resistance to conventional anticancer therapies. CSCs are characterized by a specific repertoire of surface markers and intracellular specific pathways. These unique features of CSCs biology offer the opportunity to build therapeutic approaches to specifically target these cells in the complex tumor bulk. Treatment of pediatric brain tumors with classical chemotherapeutic regimen poses challenges both for tumor location and for the presence of the blood-brain barrier (BBB). Lastly, the application of chemotherapy to a developing brain is followed by long-term sequelae, especially on cognitive abilities. Novel avenues are emerging in the therapeutic panorama taking advantage of nanomedicine. In this review we will summarize nanoparticle-based approaches and the efficacy that NPs have intrinsically demonstrated and how they are also decorated by biomolecules. Furthermore, we propose novel cargoes together with recent advances in nanoparticle design/synthesis with the final aim to specifically target the insidious CSCs population in the tumor bulk.

16.
Biomed Pharmacother ; 164: 114995, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301138

RESUMO

Medullary thyroid carcinoma (MTC) is a malignant tumor with challenging management. Multi-targeted kinase inhibitors (MKI) and tyrosine-kinase inhibitors (TKI) with high specificity for RET protein are approved for advanced MTC treatment. However, their efficacy is hindered by evasion mechanisms of tumor cells. Thus, the aim of this study was the identification of an escape mechanism in MTC cells exposed to a highly selective RET TKI. TT cells were treated with TKI, MKI, and/or the HH-Gli inhibitors, GANT61 and Arsenic Trioxide (ATO), in the presence or absence of hypoxia. RET modifications, oncogenic signaling activation, proliferation and apoptosis were assessed. Additionally, cell modifications and HH-Gli activation were also evaluated in pralsetinib-resistant TT cells. Pralsetinib inhibited RET autophosphorylation and RET downstream pathways activation in normoxic and hypoxic conditions. Additionally, pralsetinib impaired proliferation, induced the activation of apoptosis and, in hypoxic cells, downregulated HIF-1α. Focusing on escape molecular mechanisms associated with therapy, we observed increased Gli1 levels in a subset of cells. Indeed, pralsetinib stimulated the re-localization of Gli1 into the cell nuclei. Treatment of TT cells with both pralsetinib and ATO resulted in Gli1 down-regulation and impaired cell viability. Moreover, pralsetinib-resistant cells confirmed Gli1 activation and up-regulation of its transcriptionally regulated target genes. Altogether, we showed that pralsetinib impairs MTC cell growth and induces cell death, also in hypoxic conditions. The HH-Gli pathway is a new molecular mechanism of escape to pralsetinib therapy that can be overcome through combined therapy.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Proteína GLI1 em Dedos de Zinco/metabolismo , Transdução de Sinais , Trióxido de Arsênio , Neoplasias da Glândula Tireoide/genética
17.
Sci Rep ; 13(1): 19496, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945677

RESUMO

Obesity is the main risk factor for many non-communicable diseases. In clinical practice, unspecific markers are used for the determination of metabolic alterations and inflammation, without allowing the characterization of subjects at higher risk of complications. Circulating microRNAs represent an attractive approach for early screening to identify subjects affected by obesity more at risk of developing connected pathologies. The aim of this study was the identification of circulating free and extracellular vesicles (EVs)-embedded microRNAs able to identify obese patients at higher risk of type 2 diabetes (DM2). The expression data of circulating microRNAs derived from obese patients (OB), with DM2 (OBDM) and healthy donors were combined with clinical data, through network-based methodology implemented by weighted gene co-expression network analysis. The six circulating microRNAs overexpressed in OBDM patients were evaluated in a second group of patients, confirming the overexpression of miR-155-5p in OBDM patients. Interestingly, the combination of miR-155-5p with serum levels of IL-8, Leptin and RAGE was useful to identify OB patients most at risk of developing DM2. These results suggest that miR-155-5p is a potential circulating biomarker for DM2 and that the combination of this microRNA with other inflammatory markers in OB patients can predict the risk of developing DM2.


Assuntos
MicroRNA Circulante , Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Projetos Piloto , MicroRNAs/metabolismo , Biomarcadores , Obesidade/complicações , Obesidade/genética , Obesidade/patologia
18.
Nutrients ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771347

RESUMO

The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome's definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Humanos , Síndrome Metabólica/prevenção & controle , Síndrome Metabólica/complicações , Diabetes Mellitus Tipo 2/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Dieta , Alimentos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco
19.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900263

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related mortality and chemoresistance is a major medical issue. The epithelial-to-mesenchymal transition (EMT) is the primary step in the emergence of the invasive phenotype and the Hedgehog-GLI (HH-GLI) and NOTCH signaling pathways are associated with poor prognosis and EMT in CRC. CRC cell lines harboring KRAS or BRAF mutations, grown as monolayers and organoids, were treated with the chemotherapeutic agent 5-Fluorouracil (5-FU) alone or combined with HH-GLI and NOTCH pathway inhibitors GANT61 and DAPT, or arsenic trioxide (ATO) to inhibit both pathways. Treatment with 5-FU led to the activation of HH-GLI and NOTCH pathways in both models. In KRAS mutant CRC, HH-GLI and NOTCH signaling activation co-operate to enhance chemoresistance and cell motility, while in BRAF mutant CRC, the HH-GLI pathway drives the chemoresistant and motile phenotype. We then showed that 5-FU promotes the mesenchymal and thus invasive phenotype in KRAS and BRAF mutant organoids and that chemosensitivity could be restored by targeting the HH-GLI pathway in BRAF mutant CRC or both HH-GLI and NOTCH pathways in KRAS mutant CRC. We suggest that in KRAS-driven CRC, the FDA-approved ATO acts as a chemotherapeutic sensitizer, whereas GANT61 is a promising chemotherapeutic sensitizer in BRAF-driven CRC.

20.
Biomark Res ; 11(1): 82, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726827

RESUMO

Medullary Thyroid Carcinoma (MTC) is a rare neuroendocrine tumour whose diagnosis includes evaluating calcitonin serum levels, which can present fluctuations unrelated to MTC. Here, we investigated circulating DNA fragmentation and methylation changes as potential biomarkers using ddPCR on cell-free DNA (cfDNA) isolated from the plasma of MTC patients. For cfDNA fragmentation analysis, we investigated the fragment size distribution of a gene family and calculated short fragment fraction (SFF). Methylation analyses evaluated the methylation levels of CG_16698623, a CG dinucleotide in the MGMT gene that we found hypermethylated in MTC tissues by analyzing public databases. The SFF ratio and methylation of CG_16698623 were significantly increased in plasma from MTC patients at diagnosis, and patients with clinical remission or stable disease at follow-up showed no significant SFF difference compared with healthy subjects. Our data support the diagnostic value of cfDNA traits that could enable better management of MTC patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa