Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mamm Genome ; 33(1): 120-122, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34328547

RESUMO

Improving reproducibility and replicability in preclinical research is a widely discussed and pertinent topic, especially regarding ethical responsibility in animal research. INFRAFRONTIER, the European Research Infrastructure for the generation, phenotyping, archiving, and distribution of model mammalian genomes, is addressing this issue by developing internal quality principles for its different service areas, that provides a quality framework for its operational activities. This article introduces the INFRAFRONTIER Quality Principles in Systemic Phenotyping of genetically altered mouse models. A total of 11 key principles are included, ranging from general requirements for compliance with guidelines on animal testing, to the need for well-trained personnel and more specific standards such as the exchange of reference lines. Recently established requirements such as the provision of FAIR (Findable, Accessible, Interoperable, Reusable) data are also addressed. For each quality principle, we have outlined the specific context, requirements, further recommendations, and key references.


Assuntos
Genoma , Mamíferos , Animais , Modelos Animais de Doenças , Camundongos , Reprodutibilidade dos Testes
2.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867022

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Assuntos
Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Dieta Ocidental/efeitos adversos , Estudos Retrospectivos , Cirrose Hepática/metabolismo , Cirrose Hepática/etiologia
3.
F1000Res ; 8: 891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31489182

RESUMO

The constant refinement of tests used in animal research is crucial for the scientific community. This is particularly true for the field of pain research, where ethical standards are notably sensitive. The formalin test is widely used in pain research and some of its mechanisms resemble those underlying clinical pain in humans. Immediately upon injection, formalin triggers two waves (an early and a late phase) of strong, nociceptive behaviour, characterised by licking, biting, lifting and shaking the injected paw of the animal. Although well characterised at the behaviour level, since its proposal over four decades ago, there has not been any significant refinement to the formalin test, especially those combining minimisation of animal distress and preservation of behavioural outcomes of the test.  Here, we propose a modified and improved method for the formalin test. We show that anaesthetising the animal with the inhalable anaesthetic sevoflurane at the time of the injection can produce reliable, robust and reproducible results whilst animal distress during the initial phase is reduced. Importantly, our results were validated by pharmacological suppression of the behaviour during the late phase of the test with gabapentin, the anaesthetic showing no interference with the drug. In addition, we demonstrate that this is also a useful method to screen for changes in pain behaviour in response to formalin in transgenic lines.


Assuntos
Formaldeído , Medição da Dor , Dor , Animais , Comportamento Animal , Gatos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
J Neurosci Methods ; 300: 37-47, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28456660

RESUMO

An important factor in reducing variability in mouse test outcomes has been to develop assays that can be used for continuous automated home cage assessment. Our experience has shown that this has been most evidenced in long-term assessment of wheel-running activity in mice. Historically, wheel-running in mice and other rodents have been used as a robust assay to determine, with precision, the inherent period of circadian rhythms in mice. Furthermore, this assay has been instrumental in dissecting the molecular genetic basis of mammalian circadian rhythms. In teasing out the elements of this test that have determined its robustness - automated assessment of an unforced behaviour in the home cage over long time intervals - we and others have been investigating whether similar test apparatus could be used to accurately discriminate differences in distinct behavioural parameters in mice. Firstly, using these systems, we explored behaviours in a number of mouse inbred strains to determine whether we could extract biologically meaningful differences. Secondly, we tested a number of relevant mutant lines to determine how discriminative these parameters were. Our findings show that, when compared to conventional out-of-cage phenotyping, a far deeper understanding of mouse mutant phenotype can be established by monitoring behaviour in the home cage over one or more light:dark cycles.


Assuntos
Comportamento Animal/fisiologia , Pesquisa Comportamental/métodos , Ritmo Circadiano/fisiologia , Abrigo para Animais , Fotoperíodo , Corrida/fisiologia , Bem-Estar do Animal , Animais , Pesquisa Comportamental/instrumentação , Camundongos
5.
J Neurosci Methods ; 150(2): 192-201, 2006 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16098599

RESUMO

Traumatic brain injury (TBI) is caused by rapid deformation of the brain, resulting in a cascade of pathological events and ultimately neurodegeneration. Understanding how the biomechanics of brain deformation leads to tissue damage remains a considerable challenge. We have developed an in vitro model of TBI utilising organotypic hippocampal slice cultures on deformable silicone membranes, and an injury device, which generates tissue deformation through stretching the silicone substrate. Our injury device controls the biomechanical parameters of the stretch via feedback control, resulting in a reproducible and equi-biaxial deformation stimulus. Organotypic cultures remain well adhered to the membrane during deformation, so that tissue strain is 93 and 86% of the membrane strain in the x- and y-axis, respectively. Cell damage following injury is positively correlated with strain. In conclusion, we have developed a unique in vitro model to study the effects of mechanical stimuli within a complex cellular environment that mimics the in vivo environment. We believe this model could be a powerful tool to study the acute phases of TBI and the induced cell degeneration could provide a good platform for the development of potential therapeutic approaches and may be a useful in vitro alternative to animal models of TBI.


Assuntos
Lesões Encefálicas , Hipocampo/lesões , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Cultura de Órgãos/métodos , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Masculino , Degeneração Neural/patologia , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Silicones , Estresse Mecânico
6.
J Biomech ; 39(15): 2810-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16289515

RESUMO

Deformation of brain tissue in response to mechanical loading of the head is the root-cause of traumatic brain injury (TBI). Even below ultimate failure limits, deformation activates pathophysiological cascades resulting in delayed cell death. Injury response of soft tissues, such as the chest and spinal cord, is dependent on the product of deformation and velocity, a parameter termed the viscous criterion. We set out to test if hippocampal cell death could be predicted by a similar combination of strain and strain rate and if the viscous criterion was valid for hippocampus. Quantitative prediction of the brain's biological response to mechanical stimuli is difficult to achieve in animal models of TBI, so we utilized an in vitro model of TBI based on hippocampal slice cultures. We quantified the temporal development of cell death after precisely controlled deformations for 30 combinations of strain (0.05-0.50) and strain rate (0.1-50s(-1)) relevant to TBI. Loading conditions for a subset of cultures were verified by analysis of high-speed video. Cell death was found to be significantly dependent on time-post injury, on strain magnitude, and to a lesser extent, on anatomical region by a repeated-measures, three-way ANOVA. The responses of the CA1 and CA3 regions of the hippocampus were not statistically different in contrast to some in vivo TBI studies. Surprisingly, cell death was not dependent on strain rate leading us to conclude that the viscous criterion is not a valid predictor for hippocampal tissue injury. Given the large data set and extensive combinations of biomechanical parameters, predictive mathematical functions relating independent variables (strain, region, and time post-injury) to the resultant cell death were defined. These functions can be used as tolerance criteria to equip finite element models of TBI with the added capability to predict biological consequences.


Assuntos
Lesões Encefálicas/patologia , Elasticidade , Hipocampo/patologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Morte Celular , Células Cultivadas , Análise de Elementos Finitos , Modelos Biológicos , Valor Preditivo dos Testes , Prognóstico , Fatores de Tempo , Gravação em Vídeo , Ferimentos e Lesões
7.
Front Behav Neurosci ; 10: 106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375446

RESUMO

Central nervous system disorders such as autism as well as the range of neurodegenerative diseases such as Huntington's disease are commonly investigated using genetically altered mouse models. The current system for characterizing these mice usually involves removing the animals from their home-cage environment and placing them into novel environments where they undergo a battery of tests measuring a range of behavioral and physical phenotypes. These tests are often only conducted for short periods of times in social isolation. However, human manifestations of such disorders are often characterized by multiple phenotypes, presented over long periods of time and leading to significant social impacts. Here, we have developed a system which will allow the automated monitoring of individual mice housed socially in the cage they are reared and housed in, within established social groups and over long periods of time. We demonstrate that the system accurately reports individual locomotor behavior within the group and that the measurements taken can provide unique insights into the effects of genetic background on individual and group behavior not previously recognized.

8.
J Neurochem ; 101(2): 434-47, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17250683

RESUMO

The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.


Assuntos
Lesões Encefálicas/metabolismo , Canais de Cálcio/metabolismo , Hipocampo/metabolismo , Degeneração Neural/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato/metabolismo , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Hipocampo/fisiopatologia , Membranas Artificiais , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Neurológicos , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Técnicas de Cultura de Órgãos , Estimulação Física/métodos , Ratos , Receptores de Glutamato/efeitos dos fármacos , Silicones , Estresse Mecânico , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
9.
J Neurochem ; 87(6): 1381-90, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14713294

RESUMO

The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone.


Assuntos
Glucose/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/farmacologia , Animais , Hipóxia Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fluorescência , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Cultura de Órgãos/métodos , Propídio/metabolismo , Ratos , Ratos Wistar , Coloração e Rotulagem , Fatores de Tempo
10.
Stapp Car Crash J ; 47: 93-105, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17096246

RESUMO

Traumatic brain injury (TBI) is caused by brain deformations resulting in the pathophysiological activation of cellular cascades which produce delayed cell damage and death. Understanding the consequences of mechanical injuries on living brain tissue continues to be a significant challenge. We have developed a reproducible tissue culture model of TBI which employs organotypic brain slice cultures to study the relationship between mechanical stimuli and the resultant biological response of living brain tissue. The device allows for the independent control of tissue strain (up to 100%) and strain rate (up to 150 s-1) so that tolerance criteria at the tissue level can be developed for the interpretation of computational simulations. The application of texture correlation image analysis algorithms to high speed video of the dynamic deformation allows for the direct calculation of substrate strain and strain rate which was found to be equi-biaxial and independent of radial position. Precisely controlled, mechanical injuries were applied to organotypic hippocampal slice cultures, and resultant cell death was quantified. Cell death was found to be dependent on both strain magnitude and rate and required several days to develop. An immunohistological examination of injured cultures with antibodies to amyloid precursor protein revealed the presence of traumatic axonal injury, suggesting that the model closely replicates in vivo TBI but with advantages gained in vitro. We anticipate that a combined in vitro approach with optical strain mapping will provide a more detailed understanding of the dependence of brain cell injury and death on strain and strain rate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa