Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pediatr Res ; 87(3): 558-563, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31537012

RESUMO

BACKGROUND: Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are pro-angiogenic gonadotropic hormones, which classically target the reproductive organs. However, hCG, LH, and their shared CG/LH receptor are also present in the human eye. The possibility that a deficiency of these hormones may be involved in the pathogenesis of retinopathy of prematurity (ROP) during its early non-proliferative phase has not been explored. METHODS: We conducted a cross-sectional study of Michigan-born preterm infants utilizing dried blood spots. We analyzed hCG and LH blood levels at 1 week and 4 weeks of age from 113 study participants (60 without ROP; 53 with non-proliferative ROP). We utilized electrochemiluminescence assays on the Mesoscale Discovery platform. RESULTS: Similar levels of hCG are found in preterm infants at both 1 week and 4 weeks after birth. Preterm infants with non-proliferative ROP, after adjusting for sex and gestational age, have 2.42 [95% CI: 1.08-5.40] times the odds of having low hCG at fourth week of age. CONCLUSIONS: We found that hCG is present postnatally in preterm infants and that a deficiency of hCG at 4 weeks of age is potentially associated with non-proliferative ROP. This provides novel evidence to suggest that hCG may participate in human retinal angiogenesis.


Assuntos
Gonadotropina Coriônica/sangue , Recém-Nascido Prematuro/sangue , Retinopatia da Prematuridade/sangue , Biomarcadores/sangue , Gonadotropina Coriônica/deficiência , Estudos Transversais , Teste em Amostras de Sangue Seco , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Hormônio Luteinizante/sangue , Masculino , Michigan , Triagem Neonatal , Estudo de Prova de Conceito , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/etiologia , Medição de Risco , Fatores de Risco , Fatores de Tempo
2.
PLoS One ; 8(5): e61551, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690925

RESUMO

Thiazolidinedione (TZD) insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44) and BRP44 Like (BRP44L), which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT) cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13)C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT) and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Secreção de Insulina , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos , Homologia de Sequência de Aminoácidos
3.
J Biol Chem ; 278(24): 21972-9, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12690106

RESUMO

Oxazolidinone antibiotics, an important new class of synthetic antibacterials, inhibit protein synthesis by interfering with ribosomal function. The exact site and mechanism of oxazolidinone action has not been elucidated. Although genetic data pointed to the ribosomal peptidyltransferase as the primary site of drug action, some biochemical studies conducted in vitro suggested interaction with different regions of the ribosome. These inconsistent observations obtained in vivo and in vitro have complicated the understanding of oxazolidinone action. To localize the site of oxazolidinone action in the living cell, we have cross-linked a photoactive drug analog to its target in intact, actively growing Staphylococcus aureus. The oxazolidinone cross-linked specifically to 23 S rRNA, tRNA, and two polypeptides. The site of cross-linking to 23 S rRNA was mapped to the universally conserved A-2602. Polypeptides cross-linked were the ribosomal protein L27, whose N terminus may reach the peptidyltransferase center, and LepA, a protein homologous to translation factors. Only ribosome-associated LepA, but not free protein, was cross-linked, indicating that LepA was cross-linked by the ribosome-bound antibiotic. The evidence suggests that a specific oxazolidinone binding site is formed in the translating ribosome in the immediate vicinity of the peptidyltransferase center.


Assuntos
Antibacterianos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Oxazolidinonas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Eletroforese em Gel de Poliacrilamida , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo , Staphylococcus aureus/metabolismo , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa