Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Br J Haematol ; 201(4): 605-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37067783

RESUMO

Whilst bone marrow adipocytes (BMAd) have long been appreciated by clinical haemato-pathologists, it is only relatively recently, in the face of emerging data, that the adipocytic niche has come under the watchful eye of biologists. There is now mounting evidence to suggest that BMAds are not just a simple structural entity of bone marrow microenvironments but a bona fide driver of physio- and pathophysiological processes relevant to multiple aspects of health and disease. Whilst the truly multifaceted nature of BMAds has only just begun to emerge, paradigms have shifted already for normal, malignant and non-malignant haemopoiesis incorporating a view of adipocyte regulation. Major efforts are ongoing, to delineate the routes by which BMAds participate in health and disease with a final aim of achieving clinical tractability. This review summarises the emerging role of BMAds across the spectrum of normal and pathological haematological conditions with a particular focus on its impact on cancer therapy.


Assuntos
Doenças Hematológicas , Neoplasias Hematológicas , Humanos , Medula Óssea/patologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patologia , Doenças Hematológicas/terapia , Doenças Hematológicas/patologia , Adipócitos/patologia , Microambiente Tumoral
2.
BMC Biol ; 18(1): 149, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092598

RESUMO

BACKGROUND: The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear. Here, we probe the mechanism underlying metabolic regulation by analysing Phospho1 mutant mice. RESULTS: Phospho1-/- mice exhibited improved basal glucose homeostasis and resisted high-fat-diet-induced weight gain and diabetes. The metabolic protection in Phospho1-/- mice was manifested in the absence of altered levels of osteocalcin. Osteoblasts isolated from Phospho1-/- mice were enriched for genes associated with energy metabolism and diabetes; Phospho1 both directly and indirectly interacted with genes associated with glucose transport and insulin receptor signalling. Canonical thermogenesis via brown adipose tissue did not underlie the metabolic protection observed in adult Phospho1-/- mice. However, the decreased serum choline levels in Phospho1-/- mice were normalised by feeding a 2% choline rich diet resulting in a normalisation in insulin sensitivity and fat mass. CONCLUSION: We show that mice lacking the bone mineralisation enzyme PHOSPHO1 exhibit improved basal glucose homeostasis and resist high-fat-diet-induced weight gain and diabetes. This study identifies PHOSPHO1 as a potential bone-derived therapeutic target for the treatment of obesity and diabetes.


Assuntos
Metabolismo Energético , Resistência à Insulina/genética , Obesidade/genética , Monoéster Fosfórico Hidrolases/genética , Animais , Colina/metabolismo , Glucose/metabolismo , Homeostase , Masculino , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(2): 506-11, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540417

RESUMO

Obesity increases the risk of developing life-threatening metabolic diseases including cardiovascular disease, fatty liver disease, diabetes, and cancer. Efforts to curb the global obesity epidemic and its impact have proven unsuccessful in part by a limited understanding of these chronic progressive diseases. It is clear that low-grade chronic inflammation, or metaflammation, underlies the pathogenesis of obesity-associated type 2 diabetes and atherosclerosis. However, the mechanisms that maintain chronicity and prevent inflammatory resolution are poorly understood. Here, we show that inhibitor of κB kinase epsilon (IKBKE) is a novel regulator that limits chronic inflammation during metabolic disease and atherosclerosis. The pathogenic relevance of IKBKE was indicated by the colocalization with macrophages in human and murine tissues and in atherosclerotic plaques. Genetic ablation of IKBKE resulted in enhanced and prolonged priming of the NLRP3 inflammasome in cultured macrophages, in hypertrophic adipose tissue, and in livers of hypercholesterolemic mice. This altered profile associated with enhanced acute phase response, deregulated cholesterol metabolism, and steatoheptatitis. Restoring IKBKE only in hematopoietic cells was sufficient to reverse elevated inflammasome priming and these metabolic features. In advanced atherosclerotic plaques, loss of IKBKE and hematopoietic cell restoration altered plaque composition. These studies reveal a new role for hematopoietic IKBKE: to limit inflammasome priming and metaflammation.


Assuntos
Quinase I-kappa B/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Transporte/metabolismo , Feminino , Sistema Hematopoético/metabolismo , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Inflamação/etiologia , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Cell Physiol ; 231(3): 587-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26206105

RESUMO

In many skeletal diseases, including osteoporosis and disuse osteopenia, defective osteoblast differentiation is associated with increased marrow adipogenesis. The relative activity of two transcription factors, RUNX2 and PPARγ, controls whether a mesenchymal cell will differentiate into an osteoblast or adipocyte. Herein we show that the ERK/MAP kinase pathway, an important mediator of mechanical and hormonal signals in bone, stimulates osteoblastogenesis and inhibits adipogenesis via phosphorylation of RUNX2 and PPARγ. Induction of osteoblastogenesis in ST2 mesenchymal cells was associated with increased MAPK activity and RUNX2 phosphorylation. Under these conditions PPARγ phosphorylation also increased, but adipogenesis was inhibited. In contrast, during adipogenesis MAPK activity and phosphorylation of both transcription factors was reduced. RUNX2 phosphorylation and transcriptional activity were directly stimulated by MAPK, a response requiring phosphorylation at S301 and S319. MAPK also inhibited PPARγ-dependent transcription via S112 phosphorylation. Stimulation of MAPK increased osteoblastogenesis and inhibited adipogenesis, while dominant-negative suppression of activity had the opposite effect. In rescue experiments using Runx2(-/-) mouse embryo fibroblasts (MEFs), wild type or, to a greater extent, phosphomimetic mutant RUNX2 (S301E,S319E) stimulated osteoblastogenesis while suppressing adipogenesis. In contrast, a phosphorylation-deficient RUNX2 mutant (S301A,S319A) had reduced activity. Conversely, wild type or, to a greater extent, phosphorylation-resistant S112A mutant PPARγ strongly stimulated adipogenesis and inhibited osteoblastogenesis in Pparg(-/-) MEFs, while S112E mutant PPARγ was less active. Competition between RUNX2 and PPARγ was also observed at the transcriptional level. Together, these studies highlight the importance of MAP kinase signaling and RUNX2/PPARγ phosphorylation in the control of osteoblast and adipocyte lineages.


Assuntos
Adipogenia/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteogênese/fisiologia , PPAR gama/metabolismo , Animais , Osso e Ossos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/metabolismo , Fosforilação
5.
J Biol Chem ; 288(5): 3036-47, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23250756

RESUMO

Differentiation of adipocytes from preadipocytes contributes to adipose tissue expansion in obesity. Impaired adipogenesis may underlie the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mechanistically, a well defined transcriptional network coordinates adipocyte differentiation. The family of paired-related homeobox transcription factors, which includes Prrx1a, Prrx1b, and Prrx2, is implicated with regulation of mesenchymal cell fate, including myogenesis and skeletogenesis; however, whether these proteins impact adipogenesis remains to be addressed. In this study, we identify Prrx1a and Prrx1b as negative regulators of adipogenesis. We show that Prrx1a and Prrx1b are down-regulated during adipogenesis in vitro and in vivo. Stable knockdown of Prrx1a/b enhances adipogenesis, with increased expression of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α and FABP4 and increased secretion of the adipokines adiponectin and chemerin. Although stable low-level expression of Prrx1a, Prrx1b, or Prrx2 does not affect 3T3-L1 adipogenesis, transient overexpression of Prrx1a or Prrx1b inhibits peroxisome proliferator-activated receptor-γ activity. Prrx1 knockdown decreases expression of Tgfb2 and Tgfb3, and inhibition of TGFß signaling during adipogenesis mimics the effects of Prrx1 knockdown. These data support the hypothesis that endogenous Prrx1 restrains adipogenesis by regulating expression of TGFß ligands and thereby activating TGFß signaling. Finally, we find that expression of Prrx1a or Prrx1b in adipose tissue increases during obesity and strongly correlates with Tgfb3 expression in BL6 mice. These observations suggest that increased Prrx1 expression may promote TGFß activity in adipose tissue and thereby contribute to aberrant adipocyte function during obesity.


Assuntos
Adipogenia , Proteínas de Homeodomínio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta3/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína Wnt3A/metabolismo
6.
J Biol Chem ; 288(45): 32475-32489, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24068707

RESUMO

G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.


Assuntos
Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sacarina/farmacologia , Células-Tronco/metabolismo , Edulcorantes/efeitos adversos , Células 3T3-L1 , Adipogenia/genética , Adjuvantes Imunológicos/farmacologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Lipólise/genética , Masculino , Camundongos , Pessoa de Meia-Idade , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Esterol Esterase/genética , Esterol Esterase/metabolismo , Edulcorantes/farmacocinética
7.
Anal Bioanal Chem ; 406(20): 4851-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24880873

RESUMO

Microfluidics has enabled new cell biology experiments. Incorporating chemical monitoring of cellular secretion into chips offers the potential to increase information content and utility of such systems. In this work, an integrated, multilayer polydimethylsiloxane microfluidic chip was developed to simultaneously measure fatty acids and glycerol secreted from cultured adipocytes on chip in near real time. Approximately 48,000 adipocytes were loaded into a cell chamber in a reversibly sealed chip. Cells were perfused at 0.75 µL/min. Cell perfusate was split and directed to separate, continuously operating fluorescent enzyme assay channel networks. The fluorescent assay products were detected simultaneously near the outlet of the chip. The fatty acid and glycerol assays had linear dynamic ranges of 150 and 110 µM and limit of detection (LOD) of 6 and 5 µM, respectively. Surface modifications including pretreatment with sodium dodecyl sulfate were utilized to prevent adsorption of fatty acids to the chip surface. Using the chip, basal fatty acid and glycerol concentrations ranged from 0.18 to 0.7 nmol × 10(6) cell(-1) min(-1) and from 0.23 to 0.85 nmol × 10(6) cell(-1) min(-1), respectively. Using valves built into the chip, the perfusion solution was switched to add 20 µM isoproterenol, a ß-adrenergic agonist, which stimulates the release of glycerol and fatty acids in adipocytes. This manipulation resulted in a rapid and stable 1.5- to 6.0-fold increase of non-esterified fatty acid (NEFA) and glycerol. The ratio of NEFA:glycerol released increased with adipocyte age. These experiments illustrate the potential for performing multiple real-time assays on cells in culture using microfluidic devices.


Assuntos
Adipócitos/metabolismo , Ensaios Enzimáticos/instrumentação , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Lipólise/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Células 3T3-L1 , Animais , Ensaios Enzimáticos/métodos , Fluorescência , Camundongos , Técnicas Analíticas Microfluídicas/métodos
8.
J Endocrinol ; 262(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805506

RESUMO

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11ß-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11ß-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11ß-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11ß-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11ß-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Adiposidade , Medula Óssea , Restrição Calórica , Camundongos Knockout , Animais , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Feminino , Masculino , Adiposidade/genética , Medula Óssea/metabolismo , Camundongos , Humanos , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Glucocorticoides/metabolismo , Fatores Sexuais
9.
Comput Struct Biotechnol J ; 24: 89-104, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38268780

RESUMO

Background: Bone marrow adipose tissue (BMAT) represents > 10% fat mass in healthy humans and can be measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies have identified several diseases associated with BMFF but have been relatively small scale. Population-scale studies therefore have huge potential to reveal BMAT's true clinical relevance. The UK Biobank (UKBB) is undertaking MRI of 100,000 participants, providing the ideal opportunity for such advances. Objective: To establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data. Materials and methods: We studied males and females aged 60-69. Bone marrow (BM) segmentation was automated using a new lightweight attention-based 3D U-Net convolutional neural network that improved segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral head, total hip and femoral diaphysis. Models were tested using a further 10-12 datasets per region and validated using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral density, peripheral adiposity, and osteoporosis. Results: Model accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics. Conclusions: We have established a new deep learning method for accurate segmentation of small structures from large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.

10.
Elife ; 122023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096321

RESUMO

Caloric restriction (CR) reduces the risk of age-related diseases in numerous species, including humans. CR's metabolic effects, including decreased adiposity and improved insulin sensitivity, are important for its broader health benefits; however, the extent and basis of sex differences in CR's health benefits are unknown. We found that 30% CR in young (3-month-old) male mice decreased fat mass and improved glucose tolerance and insulin sensitivity, whereas these effects were blunted or absent in young females. Females' resistance to fat loss was associated with decreased lipolysis, energy expenditure and fatty acid oxidation, and increased postprandial lipogenesis, compared to males. The sex differences in glucose homeostasis were not associated with differential glucose uptake but with altered hepatic ceramide content and substrate metabolism: compared to CR males, CR females had lower TCA cycle activity and higher blood ketone concentrations, a marker of hepatic acetyl-CoA content. This suggests that males use hepatic acetyl-CoA for the TCA cycle whereas in females it accumulates, stimulating gluconeogenesis and limiting hypoglycaemia during CR. In aged mice (18-months old), when females are anoestrus, CR decreased fat mass and improved glucose homeostasis similarly in both sexes. Finally, in a cohort of overweight and obese humans, CR-induced fat loss was also sex- and age-dependent: younger females (<45 years) resisted fat loss compared to younger males while in older subjects (>45 years) this sex difference was absent. Collectively, these studies identify age-dependent sex differences in the metabolic effects of CR and highlight adipose tissue, the liver and oestrogen as key determinants of CR's metabolic benefits. These findings have important implications for understanding the interplay between diet and health, and for maximising the benefits of CR in humans.


Assuntos
Restrição Calórica , Resistência à Insulina , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Pessoa de Meia-Idade , Lactente , Redução de Peso , Acetilcoenzima A , Tecido Adiposo/metabolismo , Obesidade , Glucose/metabolismo
11.
J Lipid Res ; 53(2): 227-46, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22140268

RESUMO

White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction of adipose tissue and led to our current understanding that adipogenesis is important not only for WAT expansion, but also for maintenance of adipocyte numbers under normal metabolic states. At the turn of the millenium, studies investigating preadipocyte differentiation collided with developments in stem cell research, leading to the discovery of multipotent stem cells within WAT. Such adipose tissue-derived stem cells (ASCs) are capable of differentiating into numerous cell types of both mesodermal and nonmesodermal origin, leading to their extensive investigation from a therapeutic and tissue engineering perspective. However, the insights gained through studying ASCs have also contributed to more-recent progress in attempts to better characterize committed preadipocytes in adipose tissue. Thus, ASC research has gone back to its roots, thereby expanding our knowledge of preadipocyte commitment and adipose tissue biology.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Multipotentes , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/análise , Diferenciação Celular , Condrócitos/citologia , Células Endoteliais , Humanos , Células-Tronco Multipotentes/metabolismo , Células Musculares/citologia , Osteoblastos/citologia , Engenharia Tecidual
12.
Am J Physiol Endocrinol Metab ; 303(8): E1053-60, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22912368

RESUMO

The transcription factor Tbx15 is expressed predominantly in brown adipose tissue and in those white adipose depots that are capable of giving rise to brown-in-white ("brite"/"beige") adipocytes. Therefore, we have investigated a possible role here of Tbx15 in brown and brite adipocyte differentiation in vitro. Adipocyte precursors were isolated from interscapular and axilliary brown adipose tissues, inguinal white ("brite") adipose tissue, and epididymal white adipose tissue in 129/Sv mouse pups and differentiated in culture. Differentiation was enhanced by chronic treatment with the PPARγ agonist rosiglitazone plus the sympathetic neurotransmitter norepinephrine. Using short interfering RNAs (siRNA) directed toward Tbx15 in these primary adipocyte cultures, we decreased Tbx15 expression >90%. This resulted in reduced expression levels of adipogenesis markers (PPARγ, aP2). Importantly, Tbx15 knockdown reduced the expression of brown phenotypic marker genes (PRDM16, PGC-1α, Cox8b/Cox4, UCP1) in brown adipocytes and even more markedly in inguinal white adipocytes. In contrast, Tbx15 knockdown had no effect on white adipocytes originating from a depot that is not brite competent in vivo (epididymal). Therefore, Tbx15 may be essential for the development of the adipogenic and thermogenic programs in adipocytes/adipomyocytes capable of developing brown adipocyte features.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos Brancos/fisiologia , Proteínas com Domínio T/fisiologia , Adipócitos Marrons/ultraestrutura , Adipócitos Brancos/ultraestrutura , Adipogenia/fisiologia , Animais , Western Blotting , Diferenciação Celular/fisiologia , Primers do DNA , Marcadores Genéticos , Hipoglicemiantes/farmacologia , Camundongos , PPAR gama/agonistas , Fenótipo , RNA/biossíntese , RNA/isolamento & purificação , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Rosiglitazona , Proteínas com Domínio T/genética , Tiazolidinedionas/farmacologia
13.
JBMR Plus ; 5(2): e10439, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615108

RESUMO

Biomineralization is a fundamental process key to the development of the skeleton. The phosphatase orphan phosphatase 1 (PHOSPHO1), which likely functions within extracellular matrix vesicles, has emerged as a critical regulator of biomineralization. However, the biochemical pathways that generate intravesicular PHOSPHO1 substrates are currently unknown. We hypothesized that the enzyme ectonucleotide pyrophosphatase/phosphodiesterase 6 (ENPP6) is an upstream source of the PHOSPHO1 substrate. To test this, we characterized skeletal phenotypes of mice homozygous for a targeted deletion of Enpp6 (Enpp6 -/- ). Micro-computed tomography of the trabecular compartment revealed transient hypomineralization in Enpp6 -/- tibias (p < 0.05) that normalized by 12 weeks of age. Whole-bone cortical analysis also revealed significantly hypomineralized proximal bone in 4- but not 12-week-old Enpp6 -/- mice (p < 0.05) compared with WT animals. Back-scattered SEM revealed a failure in 4-week-old trabecular bone of mineralization foci to propagate. Static histomorphometry revealed increased osteoid volume (p > 0.01) and osteoid surface (p < 0.05), which recovered by 12 weeks but was not accompanied by changes in osteoblast or osteoclast number. This study is the first to characterize the skeletal phenotype of Enpp6 -/- mice, revealing transient hypomineralization in young animals compared with WT controls. These data suggest that ENPP6 is important for bone mineralization and may function upstream of PHOSPHO1 as a novel means of generating its substrates inside matrix vesicles. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

14.
Front Endocrinol (Lausanne) ; 12: 744527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646237

RESUMO

Over the last two decades, increased interest of scientists to study bone marrow adiposity (BMA) in relation to bone and adipose tissue physiology has expanded the number of publications using different sources of bone marrow adipose tissue (BMAT). However, each source of BMAT has its limitations in the number of downstream analyses for which it can be used. Based on this increased scientific demand, the International Bone Marrow Adiposity Society (BMAS) established a Biobanking Working Group to identify the challenges of biobanking for human BMA-related samples and to develop guidelines to advance establishment of biobanks for BMA research. BMA is a young, growing field with increased interest among many diverse scientific communities. These bring new perspectives and important biological questions on how to improve and build an international community with biobank databases that can be used and shared all over the world. However, to create internationally accessible biobanks, several practical and legislative issues must be addressed to create a general ethical protocol used in all institutes, to allow for exchange of biological material internationally. In this position paper, the BMAS Biobanking Working Group describes similarities and differences of patient information (PIF) and consent forms from different institutes and addresses a possibility to create uniform documents for BMA biobanking purposes. Further, based on discussion among Working Group members, we report an overview of the current isolation protocols for human bone marrow adipocytes (BMAds) and bone marrow stromal cells (BMSCs, formerly mesenchymal), highlighting the specific points crucial for effective isolation. Although we remain far from a unified BMAd isolation protocol and PIF, we have summarized all of these important aspects, which are needed to build a BMA biobank. In conclusion, we believe that harmonizing isolation protocols and PIF globally will help to build international collaborations and improve the quality and interpretation of BMA research outcomes.


Assuntos
Tecido Adiposo , Medula Óssea , Bancos de Tecidos/organização & administração , Adiposidade , Bancos de Espécimes Biológicos , Humanos
15.
J Bone Miner Res ; 35(5): 942-955, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31886918

RESUMO

Multiple myeloma is caused by abnormal plasma cells that accumulate in the bone marrow and interact with resident cells of the bone microenvironment to drive disease progression and development of an osteolytic bone disease. Bone marrow adipocytes (BMAds) are emerging as having important endocrine functions that can support myeloma cell growth and survival. However, how BMAds respond to infiltrating tumor cells remains poorly understood. Using the C57BL/KaLwRij murine model of myeloma, bone marrow adiposity was found to be increased in early stage myeloma with BMAds localizing along the tumor-bone interface at later stages of disease. Myeloma cells were found to uptake BMAd-derived lipids in vitro and in vivo, although lipid uptake was not associated with the ability of BMAds to promote myeloma cell growth and survival. However, BMAd-derived factors were found to increase myeloma cell migration, viability, and the evasion of apoptosis. BMAds are a major source of adiponectin, which is known to be myeloma-suppressive. Myeloma cells were found to downregulate adiponectin specifically in a model of BMAds but not in white adipocytes. The ability of myeloma cells to downregulate adiponectin was dependent at least in part on TNF-α. Collectively our data support the link between increased bone marrow adiposity and myeloma progression. By demonstrating how TNF-α downregulates BMAd-derived adiponectin, we reveal a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Neoplasias Ósseas , Mieloma Múltiplo , Adipócitos , Adiponectina , Animais , Medula Óssea , Células da Medula Óssea , Camundongos , Microambiente Tumoral , Fator de Necrose Tumoral alfa
16.
Nat Commun ; 11(1): 3097, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555194

RESUMO

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Medula Óssea/metabolismo , Glucose/metabolismo , Animais , Western Blotting , Feminino , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Ratos , Esqueleto/metabolismo
17.
Sci Rep ; 9(1): 17427, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758074

RESUMO

Adipocytes within the skeleton are collectively termed bone marrow adipose tissue (BMAT). BMAT contributes to peripheral and local metabolism, however, its capacity for cell-autonomous expression of uncoupling protein 1 (UCP1), a biomarker of beige and brown adipogenesis, remains unclear. To overcome this, Ucp1-Cre was used to drive diphtheria toxin expression in cells expressing UCP1 (Ucp1Cre+/DTA+). Despite loss of brown adipose tissue, BMAT volume was not reduced in Ucp1Cre+/DTA+ mice. Comparably, in mTmG reporter mice (Ucp1Cre+/mTmG+), Ucp1-Cre expression was absent from BMAT in young (3-weeks) and mature (16-weeks) male and female mice. Further, ß3-agonist stimulation failed to induce Ucp1-Cre expression in BMAT. This demonstrates that BMAT adipocytes are not UCP1-expressing beige/brown adipocytes. Thus, to identify novel and emerging roles for BMAT adipocytes in skeletal and whole-body homeostasis, we performed gene enrichment analysis of microarray data from adipose tissues of adult rabbits. Pathway analysis revealed genetic evidence for differences in BMAT including insulin resistance, decreased fatty acid metabolism, and enhanced contributions to local processes including bone mineral density through candidate genes such as osteopontin. In sum, this supports a paradigm by which BMAT adipocytes are a unique subpopulation that is specialized to support cells within the skeletal and hematopoietic niche.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Expressão Gênica , Proteína Desacopladora 1/genética , Tecido Adiposo/patologia , Adrenérgicos/farmacologia , Animais , Medula Óssea/patologia , Linhagem da Célula/genética , Feminino , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Esqueleto/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-32038486

RESUMO

Research into bone marrow adiposity (BMA) has expanded greatly since the late 1990s, leading to development of new methods for the study of bone marrow adipocytes. Simultaneously, research fields interested in BMA have diversified substantially. This increasing interest is revealing fundamental new knowledge of BMA; however, it has also led to a highly variable nomenclature that makes it difficult to interpret and compare results from different studies. A consensus on BMA nomenclature has therefore become indispensable. This article addresses this critical need for standardised terminology and consistent reporting of parameters related to BMA research. The International Bone Marrow Adiposity Society (BMAS) was formed in 2017 to consolidate the growing scientific community interested in BMA. To address the BMA nomenclature challenge, BMAS members from diverse fields established a working group (WG). Based on their broad expertise, the WG first reviewed the existing, unsystematic nomenclature and identified terms, and concepts requiring further discussion. They thereby identified and defined 8 broad concepts and methods central to BMA research. Notably, these had been described using 519 unique combinations of term, abbreviation and unit, many of which were overlapping or redundant. On this foundation a second consensus was reached, with each term classified as "to use" or "not to use." As a result, the WG reached a consensus to craft recommendations for 26 terms related to concepts and methods in BMA research. This was approved by the Scientific Board and Executive Board of BMAS and is the basis for the present recommendations for a formal BMA nomenclature. As an example, several terms or abbreviations have been used to represent "bone marrow adipocytes," including BMAds, BM-As, and BMAs. The WG decided that BMA should refer to "bone marrow adiposity"; that BM-A is too similar to BMA; and noted that "Ad" has previously been recommended to refer to adipocytes. Thus, it was recommended to use BMAds to represent bone marrow adipocytes. In conclusion, the standard nomenclature proposed in this article should be followed for all communications of results related to BMA. This will allow for better interactions both inside and outside of this emerging scientific community.

19.
Bone ; 118: 32-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360620

RESUMO

Bone marrow adipose tissue (BMAT) is preserved or increased in states of caloric restriction. Similarly, we found that BMAT in the tail vertebrae, but not the red marrow in the tibia, resists loss of neutral lipid with acute, 48-hour fasting in rats. The mechanisms underlying this phenomenon and its seemingly distinct regulation from peripheral white adipose tissue (WAT) remain unknown. To test the role of ß-adrenergic stimulation, a major regulator of adipose tissue lipolysis, we examined the responses of BMAT to ß-adrenergic agonists. Relative to inguinal WAT, BMAT had reduced phosphorylation of hormone sensitive lipase (HSL) after treatment with pan-ß-adrenergic agonist isoproterenol. Phosphorylation of HSL in response to ß3-adrenergic agonist CL316,243 was decreased by an additional ~90% (distal tibia BMAT) or could not be detected (tail vertebrae). Ex vivo, adrenergic stimulation of lipolysis in purified BMAT adipocytes was also substantially less than iWAT adipocytes and had site-specific properties. Specifically, regulated bone marrow adipocytes (rBMAs) from proximal tibia and femur underwent lipolysis in response to both CL316,243 and forskolin, while constitutive BMAs from the tail responded only to forskolin. This occurred independently of changes in gene expression of ß-adrenergic receptors, which were similar between adipocytes from iWAT and BMAT, and could not be explained by defective coupling of ß-adrenergic receptors to lipolytic machinery through caveolin 1. Specifically, we found that whereas caveolin 1 was necessary to mediate maximal stimulation of lipolysis in iWAT, overexpression of caveolin 1 was insufficient to rescue impaired BMAT signaling. Lastly, we tested the ability of BMAT to respond to 72-hour treatment with CL316,243 in vivo. This was sufficient to cause beiging of iWAT adipocytes and a decrease in iWAT adipocyte cell size. By contrast, adipocyte size in the tail BMAT and distal tibia remained unchanged. However, within the distal femur, we identified a subpopulation of BMAT adipocytes that underwent lipid droplet remodeling. This response was more pronounced in females than in males and resembled lipolysis-induced lipid partitioning rather than traditional beiging. In summary, BMAT has the capacity to respond to ß-adrenergic stimuli, however, its responses are muted and BMAT generally resists lipid hydrolysis and remodeling relative to iWAT. This resistance is more pronounced in distal regions of the skeleton where the BMAT adipocytes are larger with little intervening hematopoiesis, suggesting that there may be a role for both cell-autonomous and microenvironmental determinants. Resistance to ß-adrenergic stimuli further separates BMAT from known regulators of energy partitioning and contributes to our understanding of why BMAT is preserved in states of fasting and caloric restriction.


Assuntos
Adipócitos/citologia , Agonistas Adrenérgicos beta/farmacologia , Células da Medula Óssea/citologia , Lipólise , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Caveolina 1/metabolismo , Tamanho Celular/efeitos dos fármacos , Jejum , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipólise/efeitos dos fármacos , Masculino , Camundongos Knockout , Camundongos Transgênicos , Perilipina-1/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Coluna Vertebral/citologia , Esterol Esterase/metabolismo , Cauda , Tíbia/citologia
20.
FEBS Lett ; 582(1): 117-31, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18037376

RESUMO

Dyslipidemia and insulin resistance are commonly associated with catabolic or lipodystrophic conditions (such as cancer and sepsis) and with pathological states of nutritional overload (such as obesity-related type 2 diabetes). Two common features of these metabolic disorders are adipose tissue dysfunction and elevated levels of tumour necrosis factor-alpha (TNF-alpha). Herein, we review the multiple actions of this pro-inflammatory adipokine on adipose tissue biology. These include inhibition of carbohydrate metabolism, lipogenesis, adipogenesis and thermogenesis and stimulation of lipolysis. TNF-alpha can also impact the endocrine functions of adipose tissue. Taken together, TNF-alpha contributes to metabolic dysregulation by impairing both adipose tissue function and its ability to store excess fuel. The molecular mechanisms that underlie these actions are discussed.


Assuntos
Adipócitos/citologia , Fator de Necrose Tumoral alfa/fisiologia , Adipócitos/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Diferenciação Celular/fisiologia , Humanos , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa