Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 583(7814): 72-77, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612223

RESUMO

Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface1. These forests are important carbon sinks, and their conservation efforts are vital for the EU's vision of achieving climate neutrality by 20502. However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 20503.


Assuntos
Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Florestas , Biodiversidade , Biomassa , Sequestro de Carbono , Monitoramento Ambiental , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Europa (Continente) , União Europeia/economia , Agricultura Florestal/economia , Agricultura Florestal/legislação & jurisprudência , Aquecimento Global/prevenção & controle , História do Século XXI , Imagens de Satélites , Madeira/economia
3.
Glob Chang Biol ; 21(1): 363-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24990223

RESUMO

Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.


Assuntos
Atmosfera/química , Ecossistema , Florestas , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Estações do Ano , Europa (Continente) , América do Norte , Fotossíntese/fisiologia
4.
Sci Data ; 8(1): 96, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785753

RESUMO

In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.


Assuntos
Agricultura/tendências , Arecaceae , Mapeamento Geográfico , Óleo de Palmeira , Indonésia , Malásia , Tailândia
5.
Nat Commun ; 12(1): 1081, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623030

RESUMO

Forest disturbance regimes are expected to intensify as Earth's climate changes. Quantifying forest vulnerability to disturbances and understanding the underlying mechanisms is crucial to develop mitigation and adaptation strategies. However, observational evidence is largely missing at regional to continental scales. Here, we quantify the vulnerability of European forests to fires, windthrows and insect outbreaks during the period 1979-2018 by integrating machine learning with disturbance data and satellite products. We show that about 33.4 billion tonnes of forest biomass could be seriously affected by these disturbances, with higher relative losses when exposed to windthrows (40%) and fires (34%) compared to insect outbreaks (26%). The spatial pattern in vulnerability is strongly controlled by the interplay between forest characteristics and background climate. Hotspot regions for vulnerability are located at the borders of the climate envelope, in both southern and northern Europe. There is a clear trend in overall forest vulnerability that is driven by a warming-induced reduction in plant defence mechanisms to insect outbreaks, especially at high latitudes.


Assuntos
Mudança Climática , Florestas , Biomassa , Europa (Continente) , Modelos Teóricos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa