Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(6): e0240221, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35647648

RESUMO

KPC-53 enzyme is a natural KPC variant which showed a duplication of L167E168 residues in the Ω-loop structure. The blaKPC-53 gene was cloned both into pBC-SK and pET-24a vectors, and the recombinant plasmids were transferred by transformation in Escherichia coli competent cells to evaluate the antimicrobial susceptibility and to produce the enzyme. Compared to KPC-3, the KPC-53 was less stable and showed a dramatic reduction of kcat and kcat/Km versus several ß-lactams, in particular carbapenems. Indeed, a 2,000-fold reduction was observed in the kcat values of KPC-53 for imipenem and meropenem. Concerning inhibitors, KPC-53 was susceptible to tazobactam and clavulanic acid but maintained resistance to avibactam. The molecular modeling indicates that the L167E168 duplication in KPC-53 modifies the interactions between residues involved in the catalytic pocket, changing the flexibility of the Ω-loop, which is directly coupled with the catalytic properties of the KPC enzymes.


Assuntos
Aminoácidos , beta-Lactamases , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/metabolismo , Combinação de Medicamentos , Escherichia coli/metabolismo , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
2.
Mol Pharm ; 19(3): 788-797, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170971

RESUMO

Although liposomes are largely investigated as drug delivery systems, they can also exert a pharmacological activity if devoid of an active principle as a function of their composition. Specifically, charged liposomes can electrostatically interact with bacterial cells and, in some cases, induce bacterial cell death. Moreover, they also show a high affinity toward bacterial biofilms. We investigated the physicochemical and antimicrobial properties of liposomes formulated with a natural phospholipid and four synthetic l-prolinol-derived surfactants at 9/1 and 8/2 molar ratios. The synthetic components differ in the nature of the polar headgroup (quaternary ammonium salt or N-oxide) and/or the length of the alkyl chain (14 or 16 methylenes). These differences allowed us to investigate the effect of the molecular structure of liposome components on the properties of the aggregates and their ability to interact with bacterial cells. The antimicrobial properties of the different formulations were assessed against Gram-negative and Gram-positive bacteria and fungi. Drug-drug interactions with four classes of available clinical antibiotics were evaluated against Staphylococcus spp. The target of each class of antibiotics plays a pivotal role in exerting a synergistic effect. Our results highlight that the liposomal formulations with an N-oxide moiety are required for the antibacterial activity against Gram-positive bacteria. In particular, we observed a synergism between oxacillin and liposomes containing 20 molar percentage of N-oxide surfactants onStaphylococcus haemolyticus, Staphylococcus epidermidis, andStaphylococcus aureus. In the case of liposomes containing 20 molar percentage of the N-oxide surfactant with 14 carbon atoms in the alkyl chain for S. epidermidis, the minimum inhibitory concentration was 0.125 µg/mL, well below the breakpoint value of the antibiotic.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Lipossomos/química , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Staphylococcus epidermidis , Tensoativos/química , Tensoativos/farmacologia
3.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430590

RESUMO

Prostaglandin analogues (PGAs), including bimatoprost (BIM), are generally the first-line therapy for glaucoma due to their greater efficacy, safety, and convenience of use. Commercial solutions of preservative-free BIM (BIM 0.03% and 0.01%) are already available, although their topical application may result in ocular discomfort. This study aimed to evaluate the in vitro effects of preservative-free BIM 0.03% vs. 0.01% in the human conjunctival epithelial (HCE) cell line. Our results showed that long-term exposure to BIM 0.03% ensues a significant decrease in cell proliferation and viability. Furthermore, these events were associated with cell cycle arrest, apoptosis, and alterations of ΔΨm. BIM 0.01% does not exhibit cytotoxicity, and no negative influence on conjunctival cell growth and viability or mitochondrial activity has been observed. Short-time exposure also demonstrates the ability of BIM 0.03% to trigger reactive oxygen species (ROS) production and mitochondrial hyperpolarisation. An in silico drug network interaction was also performed to explore known and predicted interactions of BIM with proteins potentially involved in mitochondrial membrane potential dissipation. Our findings overall strongly reveal better cellular tolerability of BIM 0.01% vs. BIM 0.03% in HCE cells.


Assuntos
Túnica Conjuntiva , Conservantes Farmacêuticos , Humanos , Bimatoprost/farmacologia , Conservantes Farmacêuticos/farmacologia , Oxirredução
4.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628239

RESUMO

Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.


Assuntos
Cetoconazol , Miconazol , Animais , Apoptose , Glutationa/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Cetoconazol/farmacologia , Masculino , Mamíferos/metabolismo , Camundongos , Miconazol/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500603

RESUMO

Salvianolic acid B (SalB) is a bioactive compound from Salviae miltiorrhizae, one of the most important traditional herbal medicines widely used in several countries for the treatment of cardiovascular diseases. The aim of this study was to evaluate the in vitro effect of SalB on the expression and the activity of matrix metalloproteinase 9 (MMP-9), a zinc-dependent proteolytic enzyme, in human MDA-MB-231 breast cancer cells. This cellular model is characterized by a marked invasive phenotype, supported by a high constitutive expression of MMPs, especially gelatinases. SalB was first of all evaluated by in silico approaches primarily aimed at predicting the main pharmacokinetic parameters. The most favorable interaction between the natural compound and MMP-9 was instead tested by molecular docking analysis that was subsequently verified by an enzymatic inhibition assay. MDA-MB-231 cells were treated with SalB 5 µM and 50 µM for 24 h and 48 h. The conditioned media obtained from treated cells were then analyzed by gelatin zymography and reverse zymography to, respectively, evaluate the MMP-9 activity and the presence of TIMP-1. The expression of the enzyme was then evaluated by Western blot on conditioned media and by analysis of transcripts through reverse transcriptase-polymerase chain reaction (RT-PCR). The in silico approach showed the ability of SalB to interact with the catalytic zinc ion of the enzyme, with a plausible competitive mode of action. The analysis of conditioned culture media showed a reduction in MMP-9 activity and the concomitant decrease in the enzyme concentration, partially confirmed by analysis of transcripts. SalB showed the ability to modulate the function of MMP-9 in MDA-MB-231 cells. To our knowledge, this is the first time in which the role of SalB on MMP-9 in a highly invasive cellular model is investigated. The obtained results impose further and more specific evaluations in order to obtain a better understanding of the biochemical mechanisms that regulate the interaction between this natural compound and the MMP-9.


Assuntos
Neoplasias da Mama , Metaloproteinase 9 da Matriz , Humanos , Feminino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Mama/metabolismo , Invasividade Neoplásica , Simulação de Acoplamento Molecular , Zinco
6.
Artigo em Inglês | MEDLINE | ID: mdl-30917978

RESUMO

The New Delhi metallo-ß-lactamase-1 (NDM-1) enzyme is the most common metallo-ß-lactamase identified in many Gram-negative bacteria causing severe nosocomial infections. The aim of this study was to focus the attention on non-active-site residues L209 and Y229 of NDM-1 and to investigate their role in the catalytic mechanism. Specifically, the effect of the Y229W substitution in the L209F variant was evaluated by antimicrobial susceptibility testing, kinetic, and molecular dynamic (MD) studies. The Y229W single mutant and L209F-Y229W double mutant were generated by site-directed mutagenesis. The Km , kcat, and kcat/Km kinetic constants, calculated for the two mutants, were compared with those of (wild-type) NDM-1 and the L209F variant. Compared to the L209F single mutant, the L209F-Y229W double mutant showed a remarkable increase in kcat values of 100-, 240-, 250-, and 420-fold for imipenem, meropenem, benzylpenicillin, and cefepime, respectively. In the L209F-Y229W enzyme, we observed a remarkable increase in kcat/Km of 370-, 140-, and 80-fold for cefepime, meropenem, and cefazolin, respectively. The same behavior was noted using the antimicrobial susceptibility test. MD simulations were carried out on both L209F and L209F-Y229W enzymes complexed with benzylpenicillin, focusing attention on the overall mechanical features and on the differences between the two systems. With respect to the L209F variant, the L209F-Y229W double mutant showed mechanical stabilization of loop 10 and the N-terminal region. In addition, Y229W substitution destabilized both the C-terminal region and the region from residues 149 to 154. The epistatic effect of the Y229W mutation jointly with the stabilization of loop 10 led to a better catalytic efficiency of ß-lactams. NDM numbering is used in order to facilitate the comparison with other NDM-1 studies.


Assuntos
Substituição de Aminoácidos/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Mutação/genética , Penicilinas/farmacologia , beta-Lactamases/genética , Substituição de Aminoácidos/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Hidrólise/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana/métodos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida/métodos , Mutação/efeitos dos fármacos
7.
J Comput Aided Mol Des ; 33(2): 295-305, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30603820

RESUMO

The worldwide spread of beta-lactamases with hydrolytic activity extended to last resort carbapenems is aggravating the antibiotic resistance problem and endangers the successful antimicrobial treatment of clinically relevant pathogens. As recently highlighted by the World Health Organization, new strategies to contain antimicrobial resistance are urgently needed. Class A carbapenemases include members of the KPC, GES and SFC families. These enzymes have the ability to hydrolyse penicillins, cephalosporins and carbapenems, while also being less susceptible to available beta-lactam inhibitors, such as clavulanic acid. The KPC family is the most prevalent. It is mostly found on plasmids in Klebsiella pneumoniae, meaning that great amounts of attention, in terms of inhibitor design and structural biology, have been dedicated to it, whereas no efforts have yet been dedicated to GES-type enzymes, despite their ability to rapidly and horizontally disseminate. We herein report the first in silico screening against GES-5, which is the most dangerous GES-type beta-lactamase, using a library of 800K commercially available candidates that all share drug-like properties, such as their MW, logP, rotatable bonds and HBA/HBD atoms. The best screening results were filtered to enrich the number of different chemotypes, and then submitted to molecular docking. The 34 most promising candidates were selected for in vitro validation in biochemical assays against recombinant GES-5. Six hits acted as inhibitors, in the high micromolar range, towards GES-5 and led to the identification of the first, novel chemotypes with inhibitory activity against this clinically relevant carbapenemase.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular/métodos , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Simulação por Computador , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Ligação Proteica , Pseudomonas aeruginosa/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Termodinâmica
8.
Artigo em Inglês | MEDLINE | ID: mdl-29784851

RESUMO

New Delhi metallo-ß-lactamase 1 (NDM-1) is a subclass B1 metallo-ß-lactamase that exhibits a broad spectrum of activity against ß-lactam antibiotics. Here we report the kinetic study of 6 Q119X variants obtained by site-directed mutagenesis of NDM-1. All Q119X variants were able to hydrolyze carbapenems, penicillins and first-, second-, third-, and fourth-generation cephalosporins very efficiently. In particular, Q119E, Q119Y, Q119V, and Q119K mutants showed improvements in kcat/Km values for penicillins, compared with NDM-1. The catalytic efficiencies of the Q119K variant for benzylpenicillin and carbenicillin were about 65- and 70-fold higher, respectively, than those of NDM-1. The Q119K and Q119Y enzymes had kcat/Km values for ceftazidime about 25- and 89-fold higher, respectively, than that of NDM-1.


Assuntos
beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Penicilinas/farmacologia
10.
Antimicrob Agents Chemother ; 60(4): 2366-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26856833

RESUMO

Two laboratory mutants of NDM-1 were generated by replacing the isoleucine at position 35 with threonine and serine residues: the NDM-1(I35T)and NDM-1(I35S)enzymes. These mutants were well characterized, and their kinetic parameters were compared with those of the NDM-1 wild type. Thekcat,Km, andkcat/Kmvalues calculated for the two mutants were slightly different from those of the wild-type enzyme. Interestingly, thekcat/Kmof NDM-1(I35S)for loracarbef was about 14-fold higher than that of NDM-1. Far-UV circular dichroism (CD) spectra of NDM-1 and NDM-1(I35T)and NDM-1(I35S)enzymes suggest local structural rearrangements in the secondary structure with a marked reduction of α-helix content in the mutants.


Assuntos
Antibacterianos/química , Cefalosporinas/química , Escherichia coli/efeitos dos fármacos , Isoleucina/química , Resistência beta-Lactâmica/genética , beta-Lactamases/química , Substituição de Aminoácidos , Antibacterianos/farmacologia , Biocatálise , Domínio Catalítico , Cefalosporinas/farmacologia , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Isoleucina/metabolismo , Cinética , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
11.
Antimicrob Agents Chemother ; 60(5): 3123-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883708

RESUMO

Site-directed mutagenesis of CphA indicated that prolines in the P158-P172 loop are essential for the stability and the catalytic activity of subclass B2 metallo-ß-lactamases against carbapenems. The sequential substitution of proline led to a decrease of the catalytic efficiency of the variant compared to the wild-type (WT) enzyme but also to a higher affinity for the binding of the second zinc ion.


Assuntos
Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , beta-Lactamases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Prolina/química , Prolina/metabolismo , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Especificidade por Substrato/fisiologia , Zinco/farmacologia , beta-Lactamases/química , beta-Lactamases/genética
12.
Antimicrob Agents Chemother ; 59(8): 4990-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25987617

RESUMO

Two new natural CphA metallo-ß-lactamases, the CphA4 and CphA5 enzymes, were identified in water samples from municipal sewage in central Italy. Compared to CphA, the CphA4 and CphA5 enzymes showed numerous point mutations. These enzymes have a narrow spectrum of substrates focused on carbapenems only. CphA5 showed kcat values about 40-, 12-, and 97-fold higher than those observed for CphA4 versus imipenem, ertapenem, and biapenem, respectively.


Assuntos
Aeromonas hydrophila/enzimologia , Proteínas de Bactérias/genética , Esgotos/microbiologia , beta-Lactamases/genética , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Ertapenem , Imipenem/farmacologia , Itália , Dados de Sequência Molecular , Mutação Puntual/genética , Tienamicinas/farmacologia , beta-Lactamas/farmacologia
13.
Antimicrob Agents Chemother ; 58(10): 6294-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092695

RESUMO

In the present study, we performed a detailed kinetic analysis of the enzymes TEM-149, TEM-149(H240), and TEM-149(H164-H240) versus a large panel of inhibitors/inactivators, including penicillins, penems, carbapenems, monobactams, cephamycin, and carbacephem. These compounds behaved as poor substrates versus TEM-149, TEM-149(H240), and TEM-149(H164-H240) ß-lactamases, and the Ki (inhibition constant), K (dissociation constant of the Henri-Michaelis complex), k+2 and k+3 (first-order acylation and deacylation constants, respectively), and k+2/K values were calculated.


Assuntos
Histidina/química , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Carbapenêmicos/farmacologia , Cinética , Penicilinas/farmacologia
14.
Ann Hematol ; 93(4): 557-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24048634

RESUMO

In women of fertile age, iron loss consequent to excessive menstrual discharge is by far the most frequent cause of iron-deficient anemia. However, the relationship between menstrual discharge and iron loss is poorly understood. In this prospective study, total menstrual and iron losses were assayed in a large cohort of non-anemic women and women with excessive menstrual blood losses (menorrhagia) in order to provide data useful for intervention. One hundred and five Caucasian women aged 20-45 years were recruited. Blood cell count and serum ferritin (SF) levels were determined in each case before menses. Menstrual fluid losses (MFL) were determined using a standardized pads' weight method. Hematin concentration was assayed by a variant of the Alkaline Hematin Method from which iron concentration was calculated. Mean SF levels were 36.2 (range 8.6-100) ng/ml in healthy women and 6.4 (range 5-14) ng/ml in patients with menorrhagia. Median values of iron lost/cycle were 0.87 mg in healthy women and 5.2 mg in patients with menorrhagia (ranges 0.102-2.569 and 1.634-8.665 mg, respectively, p < 0.001). In women with menorrhagia, iron lost/cycle strongly correlated (0.789, p < 0.001) with MFL. In conclusion, healthy women with normal menses lose, on average, 1 mg iron/cycle. Average iron losses in patients with menorrhagia are, at least in our cohort, on average, five-to-six times higher than normal. Most women with menorrhagia had totally depleted iron stores. Indirect, quantitative evaluation of iron lost with menses may be useful to assess the risk of developing iron-deficient anemia in individual patients.


Assuntos
Anemia Ferropriva/sangue , Eritropoese/fisiologia , Ferro/sangue , Menorragia/sangue , Menstruação/sangue , Adulto , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/epidemiologia , Feminino , Humanos , Menorragia/diagnóstico , Menorragia/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
15.
Antimicrob Agents Chemother ; 57(2): 1047-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183431

RESUMO

Two laboratory mutant forms, TEM-149(H240) and TEM-149(H164-H240), of the TEM-149 extended-spectrum ß-lactamase enzyme were constructed by site-directed mutagenesis. TEM-149(H240) and TEM-149(H164-H240) were similar in kinetic behavior, except with respect to benzylpenicillin and ceftazidime. Molecular modeling of the two mutant enzymes demonstrated the role of histidine at position 240 in the reduction of the affinity of the enzyme for ceftazidime.


Assuntos
Antibacterianos/metabolismo , Ceftazidima/metabolismo , Penicilina G/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Substituição de Aminoácidos , Antibacterianos/farmacologia , Biocatálise , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/enzimologia , Escherichia coli/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Penicilina G/farmacologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/enzimologia , beta-Lactamases/classificação
16.
Phytother Res ; 27(3): 431-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22628260

RESUMO

The purpose of this study was to investigate the effects of six lichen metabolites (diffractaic acid, lobaric acid, usnic acid, vicanicin, variolaric acid, protolichesterinic acid) on proliferation, viability and reactive oxygen species (ROS) level towards three human cancer cell lines, MCF-7 (breast adenocarcinoma), HeLa (cervix adenocarcinoma) and HCT-116 (colon carcinoma). Cells were treated with different concentrations (2.5-100 µM) of these compounds for 48 h. In this comparative study, our lichen metabolites showed various cytotoxic effects in a concentration-dependent manner, and usnic acid was the most potent cytotoxic agent, while variolaric acid did not inhibit the proliferation of any of the three cell lines used. All tested lichen compounds did not exhibit free radical scavenging activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The lichen metabolites did not significantly increase the intracellular ROS level and did not prevent oxidative injury induced by t-butylhydroperoxide in HeLa cells. To better clarify the mechanism(s) of cytotoxic effect induced by protolichesterinic acid in HeLa cells, we investigated apoptotic markers such as condensation and fragmentation of nuclear chromatin and activation of caspase-3, 8 and 9. Our results revealed that the antiproliferative activity of 40 µM protolichesterinic acid in HeLa cells is related to its ability to induce programmed cell death involving caspase-3, 8 and 9 activation.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Líquens/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Anisóis/farmacologia , Benzofuranos/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Depsídeos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Hidroxibenzoatos/farmacologia , Lactonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Salicilatos/farmacologia
17.
Antioxidants (Basel) ; 12(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371872

RESUMO

Triazole and imidazole fungicides are an emerging class of contaminants with an increasing and ubiquitous presence in the environment. In mammals, their reproductive toxicity has been reported. Concerning male reproduction, a combinatorial activity of tebuconazole (TEB; triazole fungicide) and econazole (ECO; imidazole compound) in inducing mitochondrial impairment, energy depletion, cell cycle arrest, and the sequential activation of autophagy and apoptosis in Sertoli TM4 cells (SCs) has recently been demonstrated. Given the strict relationship between mitochondrial activity and reactive oxygen species (ROS), and the causative role of oxidative stress (OS) in male reproductive dysfunction, the individual and combined potential of TEB and ECO in inducing redox status alterations and OS was investigated. Furthermore, considering the impact of cyclooxygenase (COX)-2 and tumor necrosis factor-alpha (TNF-α) in modulating male fertility, protein expression levels were assessed. In the present study, we demonstrate that azoles-induced cytotoxicity is associated with a significant increase in ROS production, a drastic reduction in superoxide dismutase (SOD) and GSH-S-transferase activity levels, and a marked increase in the levels of oxidized (GSSG) glutathione. Exposure to azoles also induced COX-2 expression and increased TNF-α production. Furthermore, pre-treatment with N-acetylcysteine (NAC) mitigates ROS accumulation, attenuates COX-2 expression and TNF-α production, and rescues SCs from azole-induced apoptosis, suggesting a ROS-dependent molecular mechanism underlying the azole-induced cytotoxicity.

18.
Antioxidants (Basel) ; 11(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740096

RESUMO

Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant "phase 2" enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson's disease and Alzheimer's disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.

19.
ACS Appl Nano Mater ; 5(5): 6140-6148, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35655931

RESUMO

The efficacy of the treatment of bacterial infection is seriously reduced because of antibiotic resistance; thus, therapeutic solutions against drug-resistant microbes are necessary. Nanoparticle-based solutions are particularly promising for meeting this challenge because they can offer intrinsic antimicrobial activity and sustained drug release at the target site. Herein, we present a newly developed nanovesicle system of the quatsome family, composed of l-prolinol-derived surfactants and cholesterol, which has noticeable antibacterial activity even on Gram-negative strains, demonstrating great potential for the treatment of bacterial infections. We optimized the vesicle stability and antibacterial activity by tuning the surfactant chain length and headgroup charge (cationic or zwitterionic) and show that these quatsomes can furthermore serve as nanocarriers of pharmaceutical actives, demonstrated here by the encapsulation of (+)-usnic acid, a natural substance with many pharmacological properties.

20.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35745633

RESUMO

The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CLpro. The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CLpro. The compounds are slow-binding inactivators of 3CLpro with a Ki of 3.95 µM and 3.77 µM for protocetraric and salazinic acid, respectively, and inhibitory efficiency kinact/Ki at about 3 × 10-5 s-1µM-1. The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 µM, which is well below the Ki values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CLpro. The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa