Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(1): e5039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714527

RESUMO

In this study, we aimed to develop a fast and robust high-resolution technique for clinically feasible electrical properties tomography based on water content maps (wEPT) using Quantitative Transient-state Imaging (QTI), a multiparametric transient state-based method that is similar to MR fingerprinting. Compared with the original wEPT implementation based on standard spin-echo acquisition, QTI provides robust electrical properties quantification towards B1 + inhomogeneities and full quantitative relaxometry data. To validate the proposed approach, 3D QTI data of 12 healthy volunteers were acquired on a 1.5 T scanner. QTI-provided T1 maps were used to compute water content maps of the tissues using an empirical relationship based on literature ex-vivo measurements. Assuming that electrical properties are modulated mainly by tissue water content, the water content maps were used to derive electrical conductivity and relative permittivity maps. The proposed technique was compared with a conventional phase-only Helmholtz EPT (HH-EPT) acquisition both within whole white matter, gray matter, and cerebrospinal fluid masks, and within different white and gray matter subregions. In addition, QTI-based wEPT was retrospectively applied to four multiple sclerosis adolescent and adult patients, compared with conventional contrast-weighted imaging in terms of lesion delineation, and quantitatively assessed by measuring the variation of electrical properties in lesions. Results obtained with the proposed approach agreed well with theoretical predictions and previous in vivo findings in both white and gray matter. The reconstructed maps showed greater anatomical detail and lower variability compared with standard phase-only HH-EPT. The technique can potentially improve delineation of pathology when compared with conventional contrast-weighted imaging and was able to detect significant variations in lesions with respect to normal-appearing tissues. In conclusion, QTI can reliably measure conductivity and relative permittivity of brain tissues within a short scan time, opening the way to the study of electric properties in clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Água , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Tomografia , Tomografia Computadorizada por Raios X , Condutividade Elétrica , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
2.
NMR Biomed ; 37(6): e5114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38390667

RESUMO

A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Bainha de Mielina/metabolismo , Criança , Masculino , Feminino , Pré-Escolar , Lactente , Imagem de Tensor de Difusão , Água/química , Água Corporal , Imageamento por Ressonância Magnética
3.
Cereb Cortex ; 33(3): 729-739, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271703

RESUMO

Relaxation times and morphological information are fundamental magnetic resonance imaging-derived metrics of the human brain that reflect the status of the underlying tissue. Magnetic resonance fingerprinting (MRF) enables simultaneous acquisition of T1 and T2 maps inherently aligned to the anatomy, allowing whole-brain relaxometry and morphometry in a single scan. In this study, we revealed the feasibility of 3D MRF for simultaneous brain structure-wise morphometry and relaxometry. Comprehensive test-retest scan analyses using five 1.5-T and three 3.0-T systems from a single vendor including different scanner types across 3 institutions demonstrated that 3D MRF-derived morphological information and relaxation times are highly repeatable at both 1.5 T and 3.0 T. Regional cortical thickness and subcortical volume values showed high agreement and low bias across different field strengths. The ability to acquire a set of regional T1, T2, thickness, and volume measurements of neuroanatomical structures with high repeatability and reproducibility facilitates the ability of longitudinal multicenter imaging studies to quantitatively monitor changes associated with underlying pathologies, disease progression, and treatments.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
4.
Neuroimage ; 260: 119454, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35810938

RESUMO

Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.


Assuntos
Sobrecarga de Ferro , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Biomarcadores , Progressão da Doença , Humanos , Ferro , Sobrecarga de Ferro/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/patologia
5.
Radiol Med ; 127(9): 950-959, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35984559

RESUMO

PURPOSE: To compare the characteristics detected by 7Tesla (7 T) MR and the histological composition of ex-vivo specimens from lesions diagnosed at preoperative CT scan as Pancreatic Ductal Adenocarcinoma (PDAC). MATERIALS AND METHODS: Ten pancreatic specimens were examined. The 7 T imaging protocol included both morphologic and quantitative sequences; the latter was acquired by conventional methods and a novel multiparametric method, the magnetic resonance fingerprinting (MRF) sequence. Two radiologists reviewed the images to: (1) evaluate the quality of the morphological and quantitative sequences by assigning an "image consistency score" on a 4-point scale; (2) identify the lesion, recording its characteristics; (3) perform the quantitative analysis on "target lesion" and "non target tissue". Finally, the specimen was analysed by two pathologists. RESULTS: Seven out of 10 lesions were PDAC, 2/10 were biliary carcinomas, whereas one lesion was an ampullary adenocarcinoma. The quality of the morphological sequences was judged "excellent". The "image consistency score" for the conventional quantitative sequences and MRF were 2.8 ± 0.42 and 2.9 ± 0.57; the "overall MR examination score" was 3.5 ± 0.53. A statistical correlation was found between the relaxation time values of conventional and MRF T1-weighted sequences (p < 0.0001), as well as between conventional and MRF fat- and water-fraction maps (p < 0.05). The "target lesion" and "non target tissue" relaxation time values were statistically different according to conventional T1-, T2-weighted, and MRF T1-weighted sequences. CONCLUSIONS: Conventional T1-, T2-weighted sequences and MRF derived relaxometries may be useful in differentiating between tumour and non-target pancreatic tissue. Moreover, the MRF sequence can be used to obtain reliable relaxation time data.


Assuntos
Adenocarcinoma , Imageamento por Ressonância Magnética , Adenocarcinoma/diagnóstico por imagem , Correlação de Dados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Prospectivos , Água
6.
Neuroimage ; 226: 117573, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221451

RESUMO

Magnetic resonance fingerprinting (MRF) is highly promising as a quantitative MRI technique due to its accuracy, robustness, and efficiency. Previous studies have found high repeatability and reproducibility of 2D MRF acquisitions in the brain. Here, we have extended our investigations to 3D MRF acquisitions covering the whole brain using spiral projection k-space trajectories. Our travelling head study acquired test/retest data from the brains of 12 healthy volunteers and 8 MRI systems (3 systems at 3 T and 5 at 1.5 T, all from a single vendor), using a study design not requiring all subjects to be scanned at all sites. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived PD T1 and T2 maps to an anatomical atlas, coefficients of variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated a high repeatability (CVs 0.7-1.3% for T1, 2.0-7.8% for T2, 1.4-2.5% for normalized PD) and reproducibility (CVs of 2.0-5.8% for T1, 7.4-10.2% for T2, 5.2-9.2% for normalized PD) in gray and white matter. Both repeatability and reproducibility improved when compared to similar experiments using 2D acquisitions. Three-dimensional MRF obtains highly repeatable and reproducible estimations of T1 and T2, supporting the translation of MRF-based fast quantitative imaging into clinical applications.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes
7.
Hum Brain Mapp ; 42(2): 275-285, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089962

RESUMO

Three-dimensional (3D) Magnetic resonance fingerprinting (MRF) permits whole-brain volumetric quantification of T1 and T2 relaxation values, potentially replacing conventional T1-weighted structural imaging for common brain imaging analysis. The aim of this study was to evaluate the repeatability and reproducibility of 3D MRF in evaluating brain cortical thickness and subcortical volumetric analysis in healthy volunteers using conventional 3D T1-weighted images as a reference standard. Scan-rescan tests of both 3D MRF and conventional 3D fast spoiled gradient recalled echo (FSPGR) were performed. For each sequence, the regional cortical thickness and volume of the subcortical structures were measured using standard automatic brain segmentation software. Repeatability and reproducibility were assessed using the within-subject coefficient of variation (wCV), intraclass correlation coefficient (ICC), and mean percent difference and ICC, respectively. The wCV and ICC of cortical thickness were similar across all regions with both 3D MRF and FSPGR. The percent relative difference in cortical thickness between 3D MRF and FSPGR across all regions was 8.0 ± 3.2%. The wCV and ICC of the volume of subcortical structures across all structures were similar between 3D MRF and FSPGR. The percent relative difference in the volume of subcortical structures between 3D MRF and FSPGR across all structures was 7.1 ± 3.6%. 3D MRF measurements of human brain cortical thickness and subcortical volumes are highly repeatable, and consistent with measurements taken on conventional 3D T1-weighted images. A slight, consistent bias was evident between the two, and thus careful attention is required when combining data from MRF and conventional acquisitions.


Assuntos
Espessura Cortical do Cérebro , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/normas , Imageamento por Ressonância Magnética/normas , Adulto , Idoso , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
8.
Neuroradiology ; 63(11): 1831-1851, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33835238

RESUMO

PURPOSE: Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. METHODS: To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II-IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. RESULTS: The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. CONCLUSION: 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.


Assuntos
Glioma , Prótons , Encéfalo , Estudos de Viabilidade , Glioma/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
9.
Magn Reson Med ; 84(5): 2606-2615, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32368835

RESUMO

PURPOSE: To obtain three-dimensional (3D), quantitative and motion-robust imaging with magnetic resonance fingerprinting (MRF). METHODS: Our acquisition is based on a 3D spiral projection k-space scheme. We compared different orderings of trajectory interleaves in terms of rigid motion-correction robustness. In all tested orderings, we considered the whole dataset as a sum of 56 segments of 7-s duration, acquired sequentially with the same flip angle schedule. We performed a separate image reconstruction for each segment, producing whole-brain navigators that were aligned to the first segment using normalized correlation. The estimated rigid motion was used to correct the k-space data, and the aligned data were matched with the dictionary to obtain motion-corrected maps. RESULTS: A significant improvement on the motion-affected maps after motion correction is evident with the suppression of motion artifacts. Correlation with the motionless baseline improved by 20% on average for both T1 and T2 estimations after motion correction. In addition, the average motion-induced quantification bias of 70 ms for T1 and 18 ms for T2 values was reduced to 12 ms and 6 ms, respectively, improving the reliability of quantitative estimations. CONCLUSION: We established a method that allows correcting 3D rigid motion on a 7-s timescale during the reconstruction of MRF data using self-navigators, improving the image quality and the quantification robustness.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Movimento (Física) , Reprodutibilidade dos Testes , Estudos Retrospectivos
10.
Magn Reson Med ; 81(5): 3032-3045, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30578569

RESUMO

PURPOSE: To obtain a fast and robust fat-water separation with simultaneous estimation of water T1 , fat T1 , and fat fraction maps. METHODS: We modified an MR fingerprinting (MRF) framework to use a single dictionary combination of a water and fat dictionary. A variable TE acquisition pattern with maximum TE = 4.8 ms was used to increase the fat-water separability. Radiofrequency (RF) spoiling was used to reduce the size of the dictionary by reducing T2 sensitivity. The technique was compared both in vitro and in vivo to an MRF method that incorporated 3-point Dixon (DIXON MRF), as well as Cartesian IDEAL with different acquisition parameters. RESULTS: The proposed dictionary-based fat-water separation technique (DBFW MRF) successfully provided fat fraction, water, and fat T1 , B0 , and B1+ maps both in vitro and in vivo. The fat fraction and water T1 values obtained with DBFW MRF show excellent agreement with DIXON MRF as well as with the reference values obtained using a Cartesian IDEAL with a long TR (concordance correlation coefficient: 0.97/0.99 for fat fraction-water T1 ). Whereas fat fraction values with Cartesian IDEAL were degraded in the presence of T1 saturation, MRF methods successfully estimated and accounted for T1 in the fat fraction estimates. CONCLUSION: The DBFW MRF technique can successfully provide T1 and fat fraction quantification in under 20 s per slice, intrinsically correcting T1 biases typical of fast Dixon techniques. These features could improve the diagnostic quality and use of images in presence of fat.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Água/química , Algoritmos , Análise de Fourier , Voluntários Saudáveis , Humanos , Joelho/diagnóstico por imagem , Modelos Estatísticos , Imagens de Fantasmas , Valores de Referência , Reprodutibilidade dos Testes
11.
J Neuroimaging ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590085

RESUMO

BACKGROUND AND PURPOSE: We aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions. METHODS: The analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density. Two neuroradiologists assessed synthetic and conventional post-contrast T1-weighted images for the presence and pattern of pathological contrast enhancement in intracranial lesions. Enhancement volumes were quantitatively compared. RESULTS: Using conventional imaging as a reference, synthetic T1-weighted imaging was 93% sensitive in revealing the presence of contrast enhancing lesions. The agreement for the presence/absence of contrast enhancement was almost perfect both between readers (k = 1 for both conventional and synthetic imaging) and between sequences (k = 0.98 for both readers). In 91% of lesions, synthetic T1-weighted imaging showed the same pattern of contrast enhancement visible in conventional imaging. Differences in enhancement pattern in the remaining lesions can be due to the lower spatial resolution and the longer acquisition delay from contrast media administration of QTI compared to FSPGR. Overall, enhancement volumes appeared larger in synthetic imaging. CONCLUSIONS: QTI-derived post-contrast synthetic T1-weighted imaging captures pathological contrast enhancement in most intracranial enhancing lesions. Further comparative studies employing quantitative imaging with higher spatial resolution is needed to support our data and explore possible future applications in clinical trials.

12.
Tomography ; 9(5): 1723-1733, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37736990

RESUMO

Synthetic MR Imaging allows for the reconstruction of different image contrasts from a single acquisition, reducing scan times. Commercial products that implement synthetic MRI are used in research. They rely on vendor-specific acquisitions and do not include the possibility of using custom multiparametric imaging techniques. We introduce PySynthMRI, an open-source tool with a user-friendly interface that uses a set of input images to generate synthetic images with diverse radiological contrasts by varying representative parameters of the desired target sequence, including the echo time, repetition time and inversion time(s). PySynthMRI is written in Python 3.6, and it can be executed under Linux, Windows, or MacOS as a python script or an executable. The tool is free and open source and is developed while taking into consideration the possibility of software customization by the end user. PySynthMRI generates synthetic images by calculating the pixelwise signal intensity as a function of a set of input images (e.g., T1 and T2 maps) and simulated scanner parameters chosen by the user via a graphical interface. The distribution provides a set of default synthetic contrasts, including T1w gradient echo, T2w spin echo, FLAIR and Double Inversion Recovery. The synthetic images can be exported in DICOM or NiFTI format. PySynthMRI allows for the fast synthetization of differently weighted MR images based on quantitative maps. Specialists can use the provided signal models to retrospectively generate contrasts and add custom ones. The modular architecture of the tool can be exploited to add new features without impacting the codebase.


Assuntos
Radiologia , Estudos Retrospectivos , Meios de Contraste , Software
13.
Neuroimage Clin ; 40: 103509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717382

RESUMO

OBJECTIVES: The disruption of the blood-brain barrier (BBB) is a key and early feature in the pathogenesis of demyelinating multiple sclerosis (MS) lesions and has been neuropathologically demonstrated in both active and chronic plaques. The local overt BBB disruption in acute demyelinating lesions is captured as signal hyperintensity in post-contrast T1-weighted images because of the contrast-related shortening of the T1 relaxation time. On the contrary, the subtle BBB disruption in chronic lesions is not visible at conventional radiological evaluation but it might be of clinical relevance. Indeed, persistent, subtle BBB leakage might be linked to low-grade inflammation and plaque evolution. Here we hypothesised that 3D Quantitative Transient-state Imaging (QTI) was able to reveal and measure T1 shortening (ΔT1) reflecting small amounts of contrast media leakage in apparently non-enhancing lesions (ANELs). MATERIALS AND METHODS: Thirty-four patients with relapsing remitting MS were included in the study. All patients underwent a 3 T MRI exam of the brain including conventional sequences and QTI acquisitions (1.1 mm isotropic voxel) performed both before and after contrast media administration. For each patient, a ΔT1 map was obtained via voxel-wise subtraction of pre- and post- contrast QTI-derived T1 maps. ΔT1 values measured in ANELs were compared with those recorded in enhancing lesions and in the normal appearing white matter. A reference distribution of ΔT1 in the white matter was obtained from datasets acquired in 10 non-MS patients with unrevealing MR imaging. RESULTS: Mean ΔT1 in ANELs (57.45 ± 48.27 ms) was significantly lower than in enhancing lesions (297.71 ± 177.52 ms; p < 0. 0001) and higher than in the normal appearing white matter (36.57 ± 10.53 ms; p < 0.005). Fifty-two percent of ANELs exhibited ΔT1 higher than those observed in the white matter of non-MS patients. CONCLUSIONS: QTI-derived quantitative ΔT1 mapping enabled to measure contrast-related T1 shortening in ANELs. ANELs exhibiting ΔT1 values that deviate from the reference distribution in non-MS patients may indicate persistent, subtle, BBB disruption. Access to this information may be proved useful to better characterise pathology and objectively monitor disease activity and response to therapy.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Esclerose Múltipla/patologia , Meios de Contraste/metabolismo , Encéfalo/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética/métodos
14.
Neuroimage Clin ; 34: 102989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35303599

RESUMO

The non-invasive quantification of iron stores via Quantitative Susceptibility Mapping (QSM) could play an important role in the diagnosis and the differential diagnosis of atypical Parkinsonisms. However, the susceptibility (χ) values measured via QSM depend on echo time (TE). This effect relates to the microstructural organization within the voxel, whose composition can be altered by the disease. Moreover, pathological iron deposition in a brain area may not be spatially uniform, and conventional Region of Interest (ROI)-based analysis may fail in detecting alterations. Therefore, in this work we evaluated the impact of echo time on the diagnostic accuracy of QSM on a population of patients with Multiple System Atrophy (MSA) of either Parkinsonian (MSAp) or cerebellar (MSAc) phenotypes. In addition, we tested the potential of histogram analysis to improve QSM classification accuracy. We enrolled 32 patients (19 MSAp and 13 MSAc) and 16 healthy controls, who underwent a 7T MRI session including a gradient-recalled multi-echo sequence for χ mapping. Nine histogram features were extracted from the χ maps computed for each TE in atlas-based ROIs covering deep brain nuclei, and compared among groups. Alterations of susceptibility distribution were found in the Putamen, Substantia Nigra, Globus Pallidus and Caudate Nucleus for MSAp and in the Substantia Nigra and Dentate Nucleus for MSAc. Increased iron deposition was observed in a larger number of ROIs for the two shortest TEs and the standard deviation, the 75th and the 90th percentile were the most informative features yielding excellent diagnostic accuracy with area under the ROC curve > 0.9. In conclusion, short TEs may enhance QSM diagnostic performances, as they can capture variations in rapidly-decaying contributions of high χ sources. The analysis of histogram features allowed to reveal fine heterogeneities in the spatial distribution of susceptibility alteration, otherwise undetected by a simple evaluation of ROI χ mean values.


Assuntos
Atrofia de Múltiplos Sistemas , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Ferro/análise , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem
15.
Med Image Anal ; 77: 102387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180675

RESUMO

Voluntary and involuntary patient motion is a major problem for data quality in clinical routine of Magnetic Resonance Imaging (MRI). It has been thoroughly investigated and, yet it still remains unresolved. In quantitative MRI, motion artifacts impair the entire temporal evolution of the magnetization and cause errors in parameter estimation. Here, we present a novel strategy based on residual learning for retrospective motion correction in fast 3D whole-brain multiparametric MRI. We propose a 3D multiscale convolutional neural network (CNN) that learns the non-linear relationship between the motion-affected quantitative parameter maps and the residual error to their motion-free reference. For supervised model training, despite limited data availability, we propose a physics-informed simulation to generate self-contained paired datasets from a priori motion-free data. We evaluate motion-correction performance of the proposed method for the example of 3D Quantitative Transient-state Imaging at 1.5T and 3T. We show the robustness of the motion correction for various motion regimes and demonstrate the generalization capabilities of the residual CNN in terms of real-motion in vivo data of healthy volunteers and clinical patient cases, including pediatric and adult patients with large brain lesions. Our study demonstrates that the proposed motion correction outperforms current state of the art, reliably providing a high, clinically relevant image quality for mild to pronounced patient movements. This has important implications in clinical setups where large amounts of motion affected data must be discarded as they are rendered diagnostically unusable.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Adulto , Artefatos , Criança , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Estudos Retrospectivos
16.
Med Phys ; 48(5): 2438-2447, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33690905

RESUMO

PURPOSE: To compare the bias and inherent reliability of the quantitative (T1 and T2 ) imaging metrics generated from the magnetic resonance fingerprinting (MRF) technique using the ISMRM/NIST system phantom in an international multicenter setting. METHOD: ISMRM/NIST MRI system phantom provides standard reference T1 and T2 relaxation values (vendor-provided) for each of the 14 vials in T1 and T2 arrays. MRF-SSFP scans repeated over 30 days on GE 1.5 and 3.0 T scanners at three collaborative centers. MRF estimated T1, and T2 values averaged over 30 days were compared with the phantom vendor-provided and spin-echo (SE) based convention gold standard (GS) method. Repeatability and reproducibility were characterized by the within-case coefficient of variation (wCV) of the MRF data acquired over 30 days, along with the biases. RESULT: For the wide ranges of MRF estimated T1 values, vials #1-8 (T1 relaxation time between 2033 and 184 ms) exhibited a wCV less than 3% and 4%, respectively, on 3.0 and 1.5 T scanners. T2 values in vials #1-8 (T2 relaxation, 1044-45 ms) have shown wCV to be <7% on both 3.0 and 1.5 T scanners. A stronger linear correlation overall for T1 (R2  = 0.9960 and 0.9963 at center-1 and center-2 on 3.0 T scanner, and R2  = 0.9951 and 0.9988 at center-1 and center-3 on 1.5 T scanner) compared to T2 (R2  = 0.9971 and 0.9972 at center-1 and center-2 on 3.0 T scanner, and R2  = 0.9815 and 0.9754 at center-1 and center-3 on 1.5 T scanner). Bland-Altman (BA) analysis showed MRF based T1 and T2 values were within the limit of agreement (LOA) except for one data point. The mean difference or bias and 95% lower bound (LB) and upper bound (UB) LOA are reported in the format; mean bias: 95% LB LOA: 95% UB LOA. The biases for T1 values were 21.34: -50.00: 92.69, 21.32: -47.29: 89.94 ms, and for T2 values were -19.88: -42.37: 2.61, -19.06: -43.58: 5.45 ms on 3.0 T scanner at center-1 and center-2, respectively. Similarly, on 1.5 T scanner biases for T1 values were 26.54: -53.41: 106.50, 9.997: -51.94: 71.94 ms, and for T2 values were -23.84: -135.40: 87.76, -37.30: 134.30: 59.73 ms at center-1 and center-3, respectively. Additionally, the correlation between the SE based GS and MRF estimated T1 and T2 values (R2  = 0.9969 and 0.9977) showed a similar trend as we observed between vendor-provided and MRF estimated T1 and T2 values (R2  = 0.9963 and 0.9972). In addition to correlation, BA analysis showed that all the vials are within the LOA between the GS and vendor-provided for the T1 values and except one vial for T2 . All the vials are within the LOA between GS and MRF except one vial in T1 and T2 array. The wCV for reproducibility was <3% for both T1 and T2 values in vials #1-8, for all the 14 vials, wCV calculated for reproducibility was <4% for T1 values and <5% for T2 . CONCLUSION: This study shows that MRF is highly repeatable (wCV <4% for T1 and <7% for T2 ) and reproducible (wCV < 3% for both T1 and T2 ) in certain vials (vials #1-8).


Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
17.
Sci Rep ; 10(1): 13769, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792618

RESUMO

Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5 T and 3 T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2 and 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 min. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.

18.
Eur Radiol Exp ; 4(1): 58, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057851

RESUMO

The study focuses on radiological-pathological correlation between imaging of ex vivo samples obtained by a 7-T scanner and histological examination. The specimens will be derived from native explanted cirrhotic livers, liver grafts excluded from donation because of severe steatosis, and primary pancreatic tumours. Magnetic resonance imaging (MRI) examinations will be performed within 24 h from liver or pancreatic lesion surgical removal. The MRI protocol will include morphological sequences, quantitative T1, T2, and fat-, water-fraction maps with Cartesian k-space acquisition, and multiparametric methods based on a transient-state "MRI fingerprinting". Finally, the specimen will be fixed by formalin. Qualitative imaging analysis will be performed by two independent blinded radiologists to assess image consistency score. Quantitative analysis will be performed by drawing regions of interest on different tissue zones to measure T1 and T2 relaxation times as well as fat- and water-fraction. The same tissue areas will be analysed by the pathologists. This study will provide the possibility to improve our knowledge about qualitative and quantitative abdominal imaging assessment at 7 T, by correlating imaging characteristics and the corresponding histological composition of ex vivo specimens, in order to identify imaging biomarkers. Trial registration: ClinicalTrials.gov : 13646. Registered 9 July 2019-retrospectively registered.


Assuntos
Fígado Gorduroso/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/patologia , Projetos de Pesquisa , Fígado Gorduroso/cirurgia , Estudos de Viabilidade , Técnicas Histológicas , Humanos , Técnicas In Vitro , Neoplasias Pancreáticas/cirurgia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa