Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2122165119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867831

RESUMO

Successful infectious disease interventions can result in large reductions in parasite prevalence. Such demographic change has fitness implications for individual parasites and may shift the parasite's optimal life history strategy. Here, we explore whether declining infection rates can alter Plasmodium falciparum's investment in sexual versus asexual growth. Using a multiscale mathematical model, we demonstrate how the proportion of polyclonal infections, which decreases as parasite prevalence declines, affects the optimal sexual development strategy: Within-host competition in multiclone infections favors a greater investment in asexual growth whereas single-clone infections benefit from higher conversion to sexual forms. At the same time, drug treatment also imposes selection pressure on sexual development by shortening infection length and reducing within-host competition. We assess these models using 148 P. falciparum parasite genomes sampled in French Guiana over an 18-y period of intensive intervention (1998 to 2015). During this time frame, multiple public health measures, including the introduction of new drugs and expanded rapid diagnostic testing, were implemented, reducing P. falciparum malaria cases by an order of magnitude. Consistent with this prevalence decline, we see an increase in the relatedness among parasites, but no single clonal background grew to dominate the population. Analyzing individual allele frequency trajectories, we identify genes that likely experienced selective sweeps. Supporting our model predictions, genes showing the strongest signatures of selection include transcription factors involved in the development of P. falciparum's sexual gametocyte form. These results highlight how public health interventions impose wide-ranging selection pressures that affect basic parasite life history traits.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Antimaláricos/farmacologia , Frequência do Gene , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Modelos Biológicos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Prevalência
2.
PLoS Genet ; 13(10): e1007065, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29077712

RESUMO

With the rapidly increasing abundance and accessibility of genomic data, there is a growing interest in using population genetic approaches to characterize fine-scale dispersal of organisms, providing insight into biological processes across a broad range of fields including ecology, evolution and epidemiology. For sexually recombining haploid organisms such as the human malaria parasite P. falciparum, however, there have been no systematic assessments of the type of data and methods required to resolve fine scale connectivity. This analytical gap hinders the use of genomics for understanding local transmission patterns, a crucial goal for policy makers charged with eliminating this important human pathogen. Here we use data collected from four clinics with a catchment area spanning approximately 120 km of the Thai-Myanmar border to compare the ability of divergence (FST) and relatedness based on identity by descent (IBD) to resolve spatial connectivity between malaria parasites collected from proximal clinics. We found no relationship between inter-clinic distance and FST, likely due to sampling of highly related parasites within clinics, but a significant decline in IBD-based relatedness with increasing inter-clinic distance. This association was contingent upon the data set type and size. We estimated that approximately 147 single-infection whole genome sequenced parasite samples or 222 single-infection parasite samples genotyped at 93 single nucleotide polymorphisms (SNPs) were sufficient to recover a robust spatial trend estimate at this scale. In summary, surveillance efforts cannot rely on classical measures of genetic divergence to measure P. falciparum transmission on a local scale. Given adequate sampling, IBD-based relatedness provides a useful alternative, and robust trends can be obtained from parasite samples genotyped at approximately 100 SNPs.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , DNA de Protozoário/genética , Genoma de Protozoário/genética , Haplótipos/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Tailândia
3.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096418

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Assuntos
Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis/genética , Surtos de Doenças , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Fatores R/genética , Resistência beta-Lactâmica/genética , Proteínas de Bactérias/genética , Boston/epidemiologia , Células Clonais , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Variação Genética , Genoma Bacteriano , Humanos , Estudos Prospectivos , Alinhamento de Sequência , Transformação Bacteriana , Resistência beta-Lactâmica/fisiologia , beta-Lactamases/genética
4.
Mol Microbiol ; 103(2): 347-365, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27775185

RESUMO

Fungal secondary metabolites (SMs) are extremely important in medicine and agriculture, but regulation of their biosynthesis is incompletely understood. We have developed a genetic screen in Aspergillus nidulans for negative regulators of fungal SM gene clusters and we have used this screen to isolate mutations that upregulate transcription of the non-ribosomal peptide synthetase gene required for nidulanin A biosynthesis. Several of these mutations are allelic and we have identified the mutant gene by genome sequencing. The gene, which we designate mcrA, is conserved but uncharacterized, and it encodes a putative transcription factor. Metabolite profiles of mcrA deletant, mcrA overexpressing, and parental strains reveal that mcrA regulates at least ten SM gene clusters. Deletion of mcrA stimulates SM production even in strains carrying a deletion of the SM regulator laeA, and deletion of mcrA homologs in Aspergillus terreus and Penicillum canescens alters the secondary metabolite profile of these organisms. Deleting mcrA in a genetic dereplication strain has allowed us to discover two novel compounds as well as an antibiotic not known to be produced by A. nidulans. Deletion of mcrA upregulates transcription of hundreds of genes including many that are involved in secondary metabolism, while downregulating a smaller number of genes.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Família Multigênica , Mutação , Metabolismo Secundário , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
Mycopathologia ; 183(4): 645-658, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29500637

RESUMO

With the increasing numbers of immunocompromised hosts, Aspergillus fumigatus emerges as a lethal opportunistic fungal pathogen. Understanding innate and acquired immunity responses of the host is important for a better therapeutic strategy to deal with aspergillosis patients. To determine the transcriptome in the kidneys in aspergillosis, we employed RNA-Seq to obtain single 76-base reads of whole-genome transcripts of murine kidneys on a temporal basis (days 0; uninfected, 1, 2, 3 and 8) during invasive aspergillosis. A total of 6284 transcripts were downregulated, and 5602 were upregulated compared to baseline expression. Gene ontology enrichment analysis identified genes involved in innate and adaptive immune response, as well as iron binding and homeostasis, among others. Our results showed activation of pathogen recognition receptors, e.g., ß-defensins, C-type lectins (e.g., dectin-1), Toll-like receptors (TLR-2, TLR-3, TLR-8, TLR-9 and TLR-13), as well as Ptx-3 and C-reactive protein among the soluble receptors. Upregulated transcripts encoding various differentiating cytokines and effector proinflammatory cytokines, as well as those encoding for chemokines and chemokine receptors, revealed Th-1 and Th-17-type immune responses. These studies form a basic dataset for experimental prioritization, including other target organs, to determine the global response of the host against Aspergillus infection.


Assuntos
Aspergilose/patologia , Aspergillus fumigatus/imunologia , Perfilação da Expressão Gênica , Rim/patologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Feminino , Fatores Imunológicos/biossíntese , Fatores Imunológicos/genética , Camundongos , Análise de Sequência de RNA , Fatores de Tempo
6.
Nucleic Acids Res ; 42(Database issue): D705-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194595

RESUMO

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.


Assuntos
Aspergillus/genética , Bases de Dados Genéticas , Genoma Fúngico , Anotação de Sequência Molecular , Perfilação da Expressão Gênica , Genes Fúngicos , Internet , Análise de Sequência de RNA
7.
Proc Natl Acad Sci U S A ; 110(1): 240-5, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248304

RESUMO

The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos/genética , Loci Gênicos/genética , Plasmodium falciparum/genética , Seleção Genética , Sudeste Asiático , Marcadores Genéticos/genética , Genótipo , Funções Verossimilhança , Razão de Chances , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Análise de Regressão
8.
Anaerobe ; 38: 125-129, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26545740

RESUMO

Fusobacterium nucleatum is a strictly anaerobic, Gram negative bacterial species that has been associated with dental infections, pre-term labor, appendicitis, inflammatory bowel disease, and, more recently, colorectal cancer. The species is unusual in its phenotypic and genotypic heterogeneity, with some strains demonstrating a more virulent phenotype than others; however, as yet the genetic basis for these differences is not understood. Bacteriophage are known to contribute to the virulence phenotype of several bacterial species. In this work, we set out to characterize the bacteriophage associated with F. nucleatum subsp. animalis strain 7-1, a highly invasive isolate from the human gastrointestinal tract. As well, we used computational approaches to predict and compare bacteriophage signatures across available sequenced F. nucleatum genomes.


Assuntos
Bacteriófagos/genética , Fusobacterium nucleatum/virologia , Genoma Viral , Genômica , Bacteriófagos/classificação , Bacteriófagos/ultraestrutura , Análise por Conglomerados , Biologia Computacional/métodos , DNA Viral , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
9.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606141

RESUMO

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Assuntos
Genoma Helmíntico/genética , Schistosoma mansoni/genética , Animais , Evolução Biológica , Éxons/genética , Genes de Helmintos/genética , Interações Hospedeiro-Parasita/genética , Íntrons/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/embriologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
10.
Nucleic Acids Res ; 41(15): 7387-400, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761445

RESUMO

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.


Assuntos
Anopheles/genética , Genoma de Inseto , Insetos Vetores/genética , Animais , Anopheles/classificação , Brasil , Cromossomos de Insetos/genética , Elementos de DNA Transponíveis , Evolução Molecular , Feminino , Variação Genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Insetos Vetores/classificação , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/parasitologia , Masculino , Anotação de Sequência Molecular , Filogenia , Sintenia , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 109(14): 5429-34, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431641

RESUMO

The malaria parasite, Plasmodium falciparum, and the human immune system have coevolved to ensure that the parasite is not eliminated and reinfection is not resisted. This relationship is likely mediated through a myriad of host-parasite interactions, although surprisingly few such interactions have been identified. Here we show that the 33-kDa fragment of P. falciparum merozoite surface protein 1 (MSP1(33)), an abundant protein that is shed during red blood cell invasion, binds to the proinflammatory protein, S100P. MSP1(33) blocks S100P-induced NFκB activation in monocytes and chemotaxis in neutrophils. Remarkably, S100P binds to both dimorphic alleles of MSP1, estimated to have diverged >27 Mya, suggesting an ancient, conserved relationship between these parasite and host proteins that may serve to attenuate potentially damaging inflammatory responses.


Assuntos
Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteína 1 de Superfície de Merozoito/fisiologia , Proteínas de Neoplasias/antagonistas & inibidores , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
12.
Proc Natl Acad Sci U S A ; 109(8): 3065-70, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22315421

RESUMO

The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/genética , Europa (Continente)/epidemiologia , Humanos , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
13.
Nucleic Acids Res ; 40(Database issue): D653-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080559

RESUMO

The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.


Assuntos
Aspergillus/genética , Bases de Dados Genéticas , Genoma Fúngico , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Genes Fúngicos , Genômica , Anotação de Sequência Molecular
14.
Genet Epidemiol ; 36(4): 360-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22508222

RESUMO

Large-scale genomics initiatives such as the HapMap project and the 1000-genomes rely on powerful bioinformatics support to assist data production and analysis. Contrastingly, few bioinformatics platforms oriented to smaller research groups exist to store, handle, share, and integrate data from different sources, as well as to assist these scientists to perform their analyses efficiently. We developed such a bioinformatics platform, DIVERGENOME, to assist population genetics and genetic epidemiology studies performed by small- to medium-sized research groups. The platform is composed of two integrated components, a relational database (DIVERGENOMEdb), and a set of tools to convert data formats as required by popular software in population genetics and genetic epidemiology (DIVERGENOMEtools). In DIVERGENOMEdb, information on genotypes, polymorphism, laboratory protocols, individuals, populations, and phenotypes is organized in projects. These can be queried according to permissions. Here, we validated DIVERGENOME through a use case regarding the analysis of SLC2A4 genetic diversity in human populations. DIVERGENOME, with its intuitive Web interface and automatic data loading capability, facilitates its use by individuals without bioinformatics background, allowing complex queries to be easily interrogated and straightforward data format conversions (not available in similar platforms). DIVERGENOME is open source, freely available, and can be accessed online (pggenetica.icb.ufmg.br/divergenome) or hosted locally.


Assuntos
Biologia Computacional/métodos , Epidemiologia Molecular , Algoritmos , Automação , Brasil , Bases de Dados Genéticas , Variação Genética , Genética Populacional , Genoma Humano , Estudo de Associação Genômica Ampla , Transportador de Glucose Tipo 4/genética , Humanos , Internet , Fenótipo , Software
15.
BMC Microbiol ; 13: 91, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23617571

RESUMO

BACKGROUND: Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. RESULTS: We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. CONCLUSIONS: This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites.


Assuntos
Aspergillus/genética , Aspergillus/metabolismo , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Biologia Computacional/métodos , Genes Fúngicos , Humanos , Família Multigênica
16.
PLoS Genet ; 6(7): e1001044, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20686661

RESUMO

Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme--a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 microM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs) that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA-mediated interference (RNAi) in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.


Assuntos
Caenorhabditis elegans/genética , Estudo de Associação Genômica Ampla , Heme/administração & dosagem , Homeostase/genética , Animais , Caenorhabditis elegans/fisiologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes , Heme/farmacologia , Humanos , Leishmania , Nematoides , Trypanosoma
17.
Nat Commun ; 13(1): 2830, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595835

RESUMO

The lack of validated, distributed comprehensive genomic profiling assays for patients with cancer inhibits access to precision oncology treatment. To address this, we describe elio tissue complete, which has been FDA-cleared for examination of 505 cancer-related genes. Independent analyses of clinically and biologically relevant sequence changes across 170 clinical tumor samples using MSK-IMPACT, FoundationOne, and PCR-based methods reveals a positive percent agreement of >97%. We observe high concordance with whole-exome sequencing for evaluation of tumor mutational burden for 307 solid tumors (Pearson r = 0.95) and comparison of the elio tissue complete microsatellite instability detection approach with an independent PCR assay for 223 samples displays a positive percent agreement of 99%. Finally, evaluation of amplifications and translocations against DNA- and RNA-based approaches exhibits >98% negative percent agreement and positive percent agreement of 86% and 82%, respectively. These methods provide an approach for pan-solid tumor comprehensive genomic profiling with high analytical performance.


Assuntos
Neoplasias , Biomarcadores Tumorais/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/patologia , Medicina de Precisão
18.
BMC Genomics ; 12: 486, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21974739

RESUMO

BACKGROUND: Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus Aspergillus comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely A. nidulans. RESULTS: Based on protein homology, we mapped 97% of the 3,498 GO annotated A. nidulans genes to at least one of seven other Aspergillus species: A. niger, A. fumigatus, A. flavus, A. clavatus, A. terreus, A. oryzae and Neosartorya fischeri. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all Aspergillus species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (http://www.broadinstitute.org/fetgoat/index.html). To demonstrate the value of those new resources for functional analysis of omics data for the genus Aspergillus, we performed two case studies analyzing microarray data recently published for A. nidulans, A. niger and A. oryzae. CONCLUSIONS: We mapped A. nidulans GO annotation to seven other Aspergilli. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus Aspergillus. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.


Assuntos
Aspergillus/genética , Bases de Dados Genéticas , Genômica/métodos , Aspergillus/metabolismo , Mapeamento Cromossômico , Análise por Conglomerados , Anotação de Sequência Molecular
19.
BMC Genomics ; 12: 47, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21247453

RESUMO

BACKGROUND: MicroRNAs (miRNAs) constitute a class of single-stranded RNAs which play a crucial role in regulating development and controlling gene expression by targeting mRNAs and triggering either translation repression or messenger RNA (mRNA) degradation. miRNAs are widespread in eukaryotes and to date over 14,000 miRNAs have been identified by computational and experimental approaches. Several miRNAs are highly conserved across species. In Schistosoma, the full set of miRNAs and their expression patterns during development remain poorly understood. Here we report on the development and implementation of a homology-based detection strategy to search for miRNA genes in Schistosoma mansoni. In addition, we report results on the experimental detection of miRNAs by means of cDNA cloning and sequencing of size-fractionated RNA samples. RESULTS: Homology search using the high-throughput pipeline was performed with all known miRNAs in miRBase. A total of 6,211 mature miRNAs were used as reference sequences and 110 unique S. mansoni sequences were returned by BLASTn analysis. The existing mature miRNAs that produced these hits are reported, as well as the locations of the homologous sequences in the S. mansoni genome. All BLAST hits aligned with at least 95% of the miRNA sequence, resulting in alignment lengths of 19-24 nt. Following several filtering steps, 15 potential miRNA candidates were identified using this approach. By sequencing small RNA cDNA libraries from adult worm pairs, we identified 211 novel miRNA candidates in the S. mansoni genome. Northern blot analysis was used to detect the expression of the 30 most frequent sequenced miRNAs and to compare the expression level of these miRNAs between the lung stage schistosomula and adult worm stages. Expression of 11 novel miRNAs was confirmed by northern blot analysis and some presented a stage-regulated expression pattern. Three miRNAs previously identified from S. japonicum were also present in S. mansoni. CONCLUSION: Evidence for the presence of miRNAs in S. mansoni is presented. The number of miRNAs detected by homology-based computational methods in S. mansoni is limited due to the lack of close relatives in the miRNA repository. In spite of this, the computational approach described here can likely be applied to the identification of pre-miRNA hairpins in other organisms. Construction and analysis of a small RNA library led to the experimental identification of 14 novel miRNAs from S. mansoni through a combination of molecular cloning, DNA sequencing and expression studies. Our results significantly expand the set of known miRNAs in multicellular parasites and provide a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites.


Assuntos
Genoma Helmíntico/genética , MicroRNAs/genética , Schistosoma mansoni/genética , Animais , Biologia Computacional
20.
Nucleic Acids Res ; 37(10): 3407-17, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19336417

RESUMO

A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to approximately 6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5' and 3' untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system.


Assuntos
Proteínas de Membrana/genética , Família Multigênica , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Região 3'-Flanqueadora , Região 5'-Flanqueadora , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica , Genes de Protozoários , Genoma de Protozoário , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mucinas/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa