Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(1): e13252, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284602

RESUMO

Biosurfactants (surfactants synthesized by microorganisms) are produced by microorganisms and are suitable for use in different areas. Among biosurfactants, rhamnolipids are the most studied and popular, attracting scientists, and industries' interest. Due to their unique characteristics, the rhamnolipids have been used as synthetic surfactants' alternatives and explored in food applications. Besides the production challenges that need to be tackled to guarantee efficient production and low cost, their properties need to be adjusted to the final application, where the pH instability needs to be considered. Moreover, regulatory approval is needed to start being used in commercial applications. One characteristic of interest is their capacity to form oil-in-water nanosystems. Some of the most explored have been nanoemulsions, solid-lipid nanoparticles and nanostructured lipid carriers. This review presents an overview of the main properties of rhamnolipids, asserts the potential and efficiency of rhamnolipids to replace the synthetic surfactants in the development of nanosystems, and describes the rhamnolipids-based nanosystems used in food applications. It also discusses the main characteristics and methodologies used for their characterization and in the end, some of the main challenges are highlighted.


Assuntos
Glicolipídeos , Nanoestruturas , Glicolipídeos/química , Alimentos , Tensoativos/química
2.
Food Microbiol ; 113: 104251, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098418

RESUMO

The viability of SARS-CoV-2 on food surfaces and its propagation through the food chain has been discussed by several stakeholders, as it may represent a serious public health problem, bringing new challenges to the food system. This work shows for the first time that edible films can be used against SARS-CoV-2. Sodium alginate-based films containing gallic acid, geraniol, and green tea extract were evaluated in terms of their antiviral activity against SARS-CoV-2. The results showed that all these films have strong in vitro antiviral activity against this virus. However, a higher concentration of the active compound (1.25%) is needed for the film containing gallic acid to achieve similar results to those obtained for lower concentrations of geraniol and green tea extract (0.313%). Furthermore, critical concentrations of the active compounds in the films were used to evaluate their stability during storage. Results showed that gallic acid-loaded films lose their activity from the second week of storage, while films with geraniol and green tea extract only show a drop in activity after four weeks. These results highlight the possibility of using edible films and coatings as antiviral materials on food surfaces or food contact materials, which may help to reduce the spreading of viruses through the food chain.


Assuntos
COVID-19 , Filmes Comestíveis , Humanos , Alginatos , Embalagem de Alimentos/métodos , SARS-CoV-2 , Antioxidantes , Extratos Vegetais/farmacologia , Chá , Antivirais/farmacologia , Ácido Gálico/farmacologia
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498973

RESUMO

Marine biofouling is a natural process often associated with biofilm formation on submerged surfaces, creating a massive economic and ecological burden. Although several antifouling paints have been used to prevent biofouling, growing ecological concerns emphasize the need to develop new and environmentally friendly antifouling approaches such as bio-based coatings. Chitosan (CS) is a natural polymer that has been widely used due to its outstanding biological properties, including non-toxicity and antimicrobial activity. This work aims to produce and characterize poly (lactic acid) (PLA)-CS surfaces with CS of different molecular weight (Mw) at different concentrations for application in marine paints. Loligo opalescens pens, a waste from the fishery industry, were used as a CS source. The antimicrobial activity of the CS and CS-functionalized surfaces was assessed against Cobetia marina, a model proteobacterium for marine biofouling. Results demonstrate that CS targets the bacterial cell membrane, and PLA-CS surfaces were able to reduce the number of culturable cells up to 68% compared to control, with this activity dependent on CS Mw. The antifouling performance was corroborated by Optical Coherence Tomography since PLA-CS surfaces reduced the biofilm thickness by up to 36%, as well as the percentage and size of biofilm empty spaces. Overall, CS coatings showed to be a promising approach to reducing biofouling in marine environments mimicked in this work, contributing to the valorization of fishing waste and encouraging further research on this topic.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Quitosana , Quitosana/farmacologia , Incrustação Biológica/prevenção & controle , Biofilmes , Pintura
4.
Mar Drugs ; 19(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356809

RESUMO

The growing requirement for sustainable processes has boosted the development of biodegradable plastic-based materials incorporating bioactive compounds obtained from waste, adding value to these products. Chitosan (Ch) is a biopolymer that can be obtained by deacetylation of chitin (found abundantly in waste from the fishery industry) and has valuable properties such as biocompatibility, biodegradability, antimicrobial activity, and easy film-forming ability. This study aimed to produce and characterize poly(lactic acid) (PLA) surfaces coated with ß-chitosan and ß-chitooligosaccharides from a Loligo opalescens pen with different molecular weights for application in the food industry. The PLA films with native and depolymerized Ch were functionalized through plasma oxygen treatment followed by dip-coating, and their physicochemical properties were assessed by Fourier-transform infrared spectroscopy, X-ray diffraction, water contact angle, and scanning electron microscopy. Their antimicrobial properties were assessed against Escherichia coli and Pseudomonas putida, where Ch-based surfaces reduced the number of biofilm viable, viable but nonculturable, and culturable cells by up to 73%, 74%, and 87%, respectively, compared to PLA. Biofilm growth inhibition was confirmed by confocal laser scanning microscopy. Results suggest that Ch films of higher molecular weight had higher antibiofilm activity under the food storage conditions mimicked in this work, contributing simultaneously to the reuse of marine waste.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Loligo , Animais , Organismos Aquáticos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Embalagem de Alimentos , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299652

RESUMO

Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Quitosana , Implantes Experimentais/microbiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Biofilmes/crescimento & desenvolvimento , Quitosana/química , Quitosana/farmacologia , Propriedades de Superfície
6.
Molecules ; 25(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008004

RESUMO

ß-carotene loaded bio-based nanoparticles (NPs) were produced by the solvent-displacement method using two polymers: zein and ethylcellulose. The production of NPs was optimised through an experimental design and characterised in terms of average size and polydispersity index. The processing conditions that allowed to obtain NPs (<100 nm) were used for ß-carotene encapsulation. Then ß-carotene loaded NPs were characterised in terms of zeta potential and encapsulation efficiency. Transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis were performed for further morphological and chemical characterisation. In the end, a static in vitro digestion following the INFOGEST protocol was performed and the bioaccessibility of ß-carotene encapsulated in both NPs was determined. Results show that the best conditions for a size-controlled production with a narrow size distribution are lower polymer concentrations and higher antisolvent concentrations. The encapsulation of ß-carotene in ethylcellulose NPs resulted in nanoparticles with a mean average size of 60 ± 9 nm and encapsulation efficiency of 74 ± 2%. ß-carotene loaded zein-based NPs resulted in a mean size of 83 ± 8 nm and encapsulation efficiency of 93 ± 4%. Results obtained from the in vitro digestion showed that ß-carotene bioaccessibility when encapsulated in zein NPs is 37 ± 1%, which is higher than the value of 8.3 ± 0.1% obtained for the ethylcellulose NPs.


Assuntos
Digestão/fisiologia , Portadores de Fármacos/química , Trato Gastrointestinal/fisiologia , Nanopartículas/química , beta Caroteno/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Difração de Raios X , Zeína/química
7.
J Sci Food Agric ; 100(1): 218-224, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31512242

RESUMO

BACKGROUND: Nowadays, fat replacement in meat products is a matter of concern in the meat industry. The objective of this study was to evaluate the replacement of pork backfat with two oleogels of linseed in dry-cured sausages. RESULTS: Five batches of dry-cured sausages were prepared with two oleogels, a mixture of γ-oryzanol and ß-sitosterol (SO) and beeswax (B), at two levels of replacement (20% and 40%) (SO-20, SO-40, B-20, and B-40, respectively) and a control batch. The fatty acid profile improved in terms of nutrition: the polyunsaturated fatty acid / saturated fatty acid (PUFA/SFA) and n-6/n-3 ratio was about 1.41 and 0.93 for the higher levels of replacement, SO-40 and B-40, respectively. Quality parameters such as pH and color also changed with the inclusion of oleogels, resulting in changes in the sensory quality. CONCLUSION: Oleogels based on linseed enabled the replacement of pork backfat in fermented sausages. Depending on the level of fat substitution, such oleogels could replace fat in dry-cured sausages at the industrial level. © 2019 Society of Chemical Industry.


Assuntos
Substitutos da Gordura/análise , Manipulação de Alimentos/métodos , Óleo de Semente do Linho/análise , Produtos da Carne/análise , Animais , Ácidos Graxos/análise , Fermentação , Humanos , Compostos Orgânicos/análise , Suínos , Paladar
8.
J Sci Food Agric ; 99(7): 3318-3325, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30569530

RESUMO

BACKGROUND: Phytosterols, in particular a mixture of pure γ-oryzanol and ß-sitosterol, develop a tubular system that is able to structure oil. In this study, different concentrations of a combination of γ-oryzanol and a commercial phytosterol mixture, Vitaesterol®, were used for the development of edible oil oleogels. RESULTS: Small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) were used to characterize at nano and molecular scale the aforementioned oleogels and confirm the formation of sterols-based hollow tubule structures. Increased hardness was observed with the increase of gelator content used in oleogel manufacturing. The produced oleogels showed promising features such as tailored mechanical strength and low opacity, which are important features when considering their incorporation into food products. CONCLUSION: Despite differences in gel strength, oleogels exhibited textural characteristics that make these structures suitable for incorporation in food products. The oil migration profile associated with these oleogels can provide a solution for the controlled release of lipophilic compounds as well as for the retention of oil in cooked food products. © 2018 Society of Chemical Industry.


Assuntos
Fitosteróis/análise , Óleos de Plantas/análise , Compostos Orgânicos/análise , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Crit Rev Food Sci Nutr ; 58(11): 1864-1877, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28362165

RESUMO

Nowadays, food and nutrition have a greater impact in people's concerns, with the awareness that nutrition have a direct impact in health and wellbeing. Probiotics have an important role in this topic and consumers are starting to really understand their potential in health, leading to an increasing interest of the companies to their commercial use in foods. However, there are several limitations to the use of probiotics in foods and beverages, being one of them their efficiency (directly associated to their survival rate) upon ingestion. This work is focused in microencapsulation techniques that have been used to increase probiotics efficiency. More specifically, this work reviews the most recent and relevant research about the production and coating techniques of probiotic-loaded microcapsules, providing an insight in the effect of these coatings in probiotics survival during the gastrointestinal phase. This review shows that coatings with the better performances in probiotics protection, against the harsh conditions of digestion, are chitosan, alginate, poly-L-lysine, and whey protein. Chitosan presented an interesting performance in probiotics protection being able to maintain the initial concentration of viable probiotics during a digestive test. The analyses of different works also showed that the utilization of several coatings does not guarantee a better protection in comparison with monocoated microcapsules.


Assuntos
Cápsulas/química , Excipientes/química , Probióticos , Alginatos/química , Quitosana/química , Composição de Medicamentos , Humanos , Viabilidade Microbiana , Polilisina/química , Polímeros/química , Proteínas do Soro do Leite/química
10.
Compr Rev Food Sci Food Saf ; 17(3): 594-614, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-33350124

RESUMO

Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers' gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.

11.
Int J Biol Macromol ; 268(Pt 2): 131963, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688343

RESUMO

Alginate-based dressings have been shown to promote wound healing, leveraging the unique properties of alginate. This work aimed to develop and characterize flexible individual and bilayered films to deliver bacteriophages (phages) and ε-Poly-l-lysine (ε-PLL). Films varied in different properties. The moisture content, swelling and solubility increased with higher alginate concentrations. The water vapour permeability, crucial in biomedical films to balance moisture levels for effective wound healing, reached optimal levels in bilayer films, indicating these will be able to sustain an ideal moist environment. The bilayer films showed improved ductility (lower tensile strength and increased elongation at break) compared to individual films. The incorporated phages maintained viability for 12 weeks under vacuum and refrigerated conditions, and their release was sustained and gradual. Antibacterial immersion tests showed that films with phages and ε-PLL significantly inhibited Pseudomonas aeruginosa PAO1 growth (>3.1 Log CFU/cm2). Particle release was influenced by the swelling degree and diffusional processes within the polymer network, providing insights into controlled release mechanisms for particles of varying size (50 nm to 6 µm) and charge. The films developed, demonstrated modulated release capabilities for active agents, and may show potential as controlled delivery systems for phages and wound healing adjuvants.


Assuntos
Bacteriófagos , Polilisina , Pseudomonas aeruginosa , Cicatrização , Polilisina/química , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Alginatos/química , Bandagens , Vapor , Permeabilidade , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
12.
Int J Biol Macromol ; 259(Pt 2): 129288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211926

RESUMO

Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.


Assuntos
Antioxidantes , Anidridos Succínicos , Humanos , Emulsões/química , Antioxidantes/farmacologia , Resveratrol , Derivados da Hipromelose , Anidridos Succínicos/química , Células CACO-2 , Amido/química , Digestão
13.
Foods ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338609

RESUMO

In this work, alpha-tocopherol (α-TOC) was encapsulated in poly(lactic acid) nanoparticles (PLA NPs) and added to low-density polyethylene (LDPE) films with the aim of producing an active film for food packaging applications. PLA NPs loaded with α-TOC were produced through nanoprecipitation and dried using two methods (freeze-dryer and oven). LDPE-based films with final polymeric matrix concentrations of 10 and 20 g/kg were then produced through blow extrusion. The results showed that LDPE-based films loaded with α-TOC can be produced using blow extrusion, and a good distribution of PLA NPs can be obtained within the LDPE matrix as observed using scanning electron microscopy (SEM). The mechanical properties were affected by the incorporation of α-TOC and PLA NPs loaded with α-TOC, with the observation of a decrease in tensile strength and Young's Modulus values and an increase in elongation at break. Regarding water vapor permeability, the films showed a reduction in the values with the addition of α-TOC and PLA NPs loaded with α-TOC compared to the LDPE film (control). Films with α-TOC in the free state and loaded in PLA NPs showed antioxidant activity, but their behavior was affected by the encapsulation process.

14.
Food Chem ; 427: 136654, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399642

RESUMO

This work had as main objective to encapsulate vitamin D3 (VD3) into nanostructured lipid carriers (NLCs) using rhamnolipids as surfactant. Glycerol monostearate and medium chain triglycerides with 2.625 % of VD3 were used as lipid materials. The three formulations of NLCs with VD3 (NLCs + VD3) were composed by 99 % of aqueous phase, 1 % of lipid phase and 0.05 % of surfactant. The difference between them was the ratio of solid:liquid in lipid phase. The NLCs + VD3 sizes ranged between 92.1 and 108.1 nm. The most stable formulation maintaining their caracteristics for 60 days at 4 °C. The NLCs + VD3 cytotoxicity demonstrated that concentrations of 0.25 mg/mL or lower up had a good biocompatibility in vitro. During the in vitro digestion, formulations with lower sizes and higher content on solid lipid had higher lipolysis rate and consequently higher VD3 bioaccessibility. The rhamnolipids-based NLCs are a good option for the encapsulation of VD3.


Assuntos
Lipídeos , Nanoestruturas , Colecalciferol , Portadores de Fármacos , Tensoativos , Tamanho da Partícula
15.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376571

RESUMO

Currently, one-third of all food produced worldwide is wasted or lost, and bacterial contamination is one of the main reasons. Moreover, foodborne diseases are a severe problem, causing more than 420,000 deaths and nearly 600 million illnesses yearly, demanding more attention to food safety. Thus, new solutions need to be explored to tackle these problems. A possible solution for bacterial contamination is using bacteriophages (phages), which are harmless to humans; these natural viruses can be used to prevent or reduce food contamination by foodborne pathogens. In this regard, several studies showed the effectiveness of phages against bacteria. However, when used in their free form, phages can lose infectivity, decreasing the application in foods. To overcome this problem, new delivery systems are being studied to incorporate phages and ensure prolonged activity and controlled release in food systems. This review focuses on the existent and new phage delivery systems applied in the food industry to promote food safety. Initially, an overview of phages, their main advantages, and challenges is presented, followed by the different delivery systems, focused in methodologies, and biomaterials that can be used. In the end, examples of phage applications in foods are disclosed and future perspectives are approached.


Assuntos
Bacteriófagos , Doenças Transmitidas por Alimentos , Humanos , Contaminação de Alimentos/prevenção & controle , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Bactérias
16.
Food Funct ; 14(23): 10286-10313, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947452

RESUMO

Herein, we review the current state-of-the-art on the use of micro- and nano-delivery systems, a possible solution to some of the drawbacks associated with the incorporation of resveratrol in foods. Specifically, we present an overview of a wide range of micro-nanostructures, namely, lipidic and polymeric, used for the delivery of resveratrol. Also, the gastrointestinal fate of resveratrol-loaded micro-nanostructures, as a critical parameter for their use as functional food, is explored in terms of stability, bioaccessibility, and bioavailability. Different micro-nanostructures are of interest for the development of functional foods given that they can provide different advantages and properties to these foods and even be tailor-made to address specific issues (e.g., controlled or targeted release). Therefore, we discuss a wide range of micro-nanostructures, namely, lipidic and polymeric, used to deliver resveratrol and aimed at the development of functional foods. It has been reported that the use of some production methodologies can be of greater interest than others, for example, emulsification, solvent displacement and electrohydrodynamic processing (EHDP) enable a greater increase in bioaccessibility. Additionally, the use of coatings facilitates further improvements in bioaccessibility, which is likely due to the increased gastric stability of the coated micro-nanostructures. Other properties, such as mucoadhesion, can also help improve bioaccessibility due to the increase in gut retention time. Additionally, cytotoxicity (e.g., biocompatibility, antioxidant, and anti-inflammatory) and possible sensorial impact of resveratrol-loaded micro- and nano-systems in foods are highlighted.


Assuntos
Alimento Funcional , Nanoestruturas , Resveratrol , Antioxidantes , Nanoestruturas/química , Lipídeos/química , Polímeros
17.
Foods ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002134

RESUMO

Due to environmental concerns, there is an increasing need to reduce the use of synthetic and non-renewable packaging materials to reduce waste and increase sustainability. This study aimed to characterise sodium alginate edible-based films (SA) incorporated with laurel leaf extract (LLE) and olive leaf extract (OLE) obtained by ultrasound-assisted extraction. Determination of total phenolic content, antioxidant, and antimicrobial activity was performed for the extracts and films. Also, thickness, tensile strength, elongation at break, modulus of elasticity, opacity and colour, moisture content, water vapour permeability (WVP), Fourier-transform infrared spectroscopy (FTIR) spectra, and surface morphology by scanning electron microscope (SEM) analyses were performed for the films. LLE yielded better results in terms of phenolic content (195 mg GAE/g), antioxidant (2.1 TE/g extract) and antimicrobial activity (MIC at 1% for Listeria monocytogenes and Staphylococcus aureus, and 1.8% for Enterococcus faecalis). For the films, the simultaneous incorporation of LLE 1% (w/v) and OLE 1% (w/v) resulted in a significant reduction of approximately 2 log CFU/g against S. aureus. The addition of LLE and OLE extracts also proved to improve barrier properties (lower WVP for SA films with LLE 1% + OLE 1%, 3.49 × 10-11 g m-1 s-1 Pa-1) and promoted changes in resistance and flexibility. The results demonstrated that active alginate-based films can be valuable for enhancing food preservation.

18.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765613

RESUMO

Chitosan is obtained from the deacetylation of chitin, and it is known to possess antimicrobial activity. It has attracted attention as it may be used for treating infections caused by different types of microorganisms due to its broad spectrum. Its application in the form of micro- or nanoparticles (CM/CN) has expanded its usage, as in this form, it retains its activity, and remain stable in aqueous solutions. However, inconsistencies in the results reported by different authors have been identified. In this communication, the antimicrobial activity of CN produced from different starting materials was tested against Listeria monocytogenes. It was observed that, even though all the starting materials were reported to have a molecular weight (MW) below 200 kDa and degree of deacetylation (DD) > 75%, the size of the CNs were significantly different (263 nm vs. 607 nm). Furthermore, these differences in sizes exerted a direct effect on the antimicrobial properties of the particles, as when testing the ones with the smallest size, i.e., 263 nm, a lower Minimum Inhibitory Concentration (MIC) was achieved, i.e., 0.04 mg/mL. Even though the largest particles, i.e., 607 nm, in individual experiments were able to achieve an MIC of 0.03 mg/mL, the results with CN presented great variation among replicates and up to 0.2 mg/mL were needed in other replicates. The starting material has a critical impact on the properties of the CN, and it must be carefully characterized and selected for the intended application, and MW and DD solely do not fully account for these properties.

19.
Foods ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201111

RESUMO

The effectiveness of an alginate/chitosan nanomultilayer coating without (NM) and with Aloe vera liquid fraction (NM+Av) was evaluated on the postharvest quality of tomato fruit at 20 °C and 85% relative humidity (RH) to simulate direct consumption. Both nanomultilayer coatings had comparable effects on firmness and pH values. However, the NM+Av coating significantly reduced weight loss (4.5 ± 0.2%) and molds and yeasts (3.5-4.0 log CFU g-1) compared to uncoated fruit (16.2 ± 1.2% and 8.0 ± 0.0 log CFU g-1, respectively). It notably lowered O2 consumption by 70% and a 52% decrease in CO2 production, inhibiting ethylene synthesis. Visual evaluation confirmed NM+Av's efficacy in preserving the postharvest quality of tomato. The preservation of color, indicated by the Minolta color (a*/b*) values, demonstrated NM+Av's ability to keep the light red stage compared to uncoated fruit. The favorable effects of NM+Av coating on enhancing postharvest quality indicates it as a potential alternative for large-scale tomato fruit preservation.

20.
Gels ; 8(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35735693

RESUMO

Growing awareness concerning human health and sustainability has been continually driving the need to change consumers' habits and develop new bio-based and environmentally friendly materials that could be used in new product formulations [...].

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa