Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 28(25): e202200130, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35230740

RESUMO

Here, we report the synthesis and properties of heterosubtituted αß-fused BODIPY fluorophores. The compounds were obtained in good yields by sequential and selective Stille cross-coupling reactions from 2,3,5,6-tetrahalo-BODIPY, allowing the introduction of different substituents at the 3,5 and 2,6 positions of the BODIPY ring. The final fused compounds were synthesized using oxidative cyclisation with ferrous chloride. The fully fused compounds show a strong bathochromically shifted emission along with a hyperchromic shift of the absorption maxima. The fluorescence quantum yields remain relatively large for compounds emitting in this wavelength range. Computational studies have been carried out to fully understand the photophysical behaviour of these dyes.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Fluorescência
2.
Nat Commun ; 14(1): 3443, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301872

RESUMO

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 µmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 µmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.


Assuntos
Dióxido de Carbono , Polímeros , Cobre , Monóxido de Carbono , Porosidade
3.
J Phys Chem Lett ; 12(11): 2937-2943, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33725450

RESUMO

Ultra-narrow-band NIR photomultiplication organic photodetectors (PM-OPDs) were realized in ITO/PEDOT:PSS/active layers/Al based on an interfacial-trap-induced charge injection narrowing (CIN) concept. The rather less Bod Ethex-Hex (BEH) is imbedded in a polymer donor matrix to form large amounts of isolated electron traps. Trapped electrons in BEH close to an Al electrode will enforce hole-tunneling injection induced by interfacial band bending, resulting in a photomultiplication phenomenon. PM-OPDs with P3HT:BEH as the active layer exhibit a narrow response peak at 850 nm with a full-width at half-maximum (fwhm) of 27 nm as well as a rather weak response from 650 to 800 nm. The EQE of 29 700% at 850 nm was achieved in PM-OPDs by incorporating 0.02 wt % of F6TCNNQ under -13 V of applied voltage. The rejection ratio (RR) of the optimized PM-OPDs with F6TCNNQ is 11 for EQE850 nm/EQE700 nm and 10 for EQE850 nm/EQE750 nm, respectively. An EQE of 15 300% at 850 nm was achieved in the ternary PM-OPDs under -13 V of applied voltage, with markedly enhanced RRs of 44 for EQE850 nm/EQE700 nm and 30 for EQE850 nm/EQE750 nm.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa