Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Child Psychol Psychiatry ; 64(2): 299-310, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36440655

RESUMO

BACKGROUND: Causal explanations for the association of young motherhood with increased risk for child attention-deficit hyperactivity disorder (ADHD) remain unclear. METHODS: The ABCD Study recruited 11,878 youth from 22 sites across the United States between June 1, 2016 and October 15, 2018. This cross-sectional analysis of 8,514 children aged 8-11 years excluded 2,260 twins/triplets, 265 adopted children, and 839 younger siblings. We examined associations of maternal age with ADHD clinical range diagnoses based on the Child Behavior Checklist and NIH Toolbox Flanker Attention Scores using mixed logistic and linear regression models, respectively. We conducted confounding and causal mediation analyses using genotype array, demographic, socioeconomic, and prenatal environment data to investigate which genetic and environmental variables may explain the association between young maternal age and child ADHD. RESULTS: In crude models, each 10-year increase in maternal age was associated with 32% decreased odds of ADHD clinical range diagnosis (OR = 0.68; 95% CI [0.59, 0.78]) and 1.09-points increased NIH Flanker Attention Scores (ß = 1.09; 95% CI [0.76, 1.41]), indicating better child visual selective attention. However, adjustment for confounders weakened these associations. The strongest confounders were family income, caregiver education, and ADHD polygenic risk score for ADHD clinical range diagnoses, and family income, caregiver education, and race/ethnicity for NIH Flanker Attention Scores. Breastfeeding duration, prenatal alcohol exposure, and prenatal tobacco exposure were responsible for up to 18%, 6%, and 4% mediation, respectively. CONCLUSIONS: Socioeconomic disadvantages were likely the primary explanation for the association of young maternal age with child ADHD, although genetics and modifiable environmental factors also played a role. Public policies aimed at reducing the burden of ADHD associated with young motherhood should target socioeconomic inequalities and support young pregnant women by advocating for reduced prenatal tobacco exposure and healthy breastfeeding practices after childbirth.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Efeitos Tardios da Exposição Pré-Natal , Recém-Nascido , Adolescente , Criança , Humanos , Gravidez , Feminino , Idade Materna , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos Transversais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Parto
2.
Hum Brain Mapp ; 43(12): 3857-3872, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35471639

RESUMO

Sex impacts the development of the brain and cognition differently across individuals. However, the literature on brain sex dimorphism in humans is mixed. We aim to investigate the biological underpinnings of the individual variability of sexual dimorphism in the brain and its impact on cognitive performance. To this end, we tested whether the individual difference in brain sex would be linked to that in cognitive performance that is influenced by genetic factors in prepubertal children (N = 9,658, ages 9-10 years old; the Adolescent Brain Cognitive Development study). To capture the interindividual variability of the brain, we estimated the probability of being male or female based on the brain morphometry and connectivity features using machine learning (herein called a brain sex score). The models accurately classified the biological sex with a test ROC-AUC of 93.32%. As a result, a greater brain sex score correlated significantly with greater intelligence (pfdr < .001, ηp2  = .011-.034; adjusted for covariates) and higher cognitive genome-wide polygenic scores (GPSs) (pfdr < .001, ηp2 < .005). Structural equation models revealed that the GPS-intelligence association was significantly modulated by the brain sex score, such that a brain with a higher maleness score (or a lower femaleness score) mediated a positive GPS effect on intelligence (indirect effects = .006-.009; p = .002-.022; sex-stratified analysis). The finding of the sex modulatory effect on the gene-brain-cognition relationship presents a likely biological pathway to the individual and sex differences in the brain and cognitive performance in preadolescence.


Assuntos
Cognição , Individualidade , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Inteligência , Masculino , Herança Multifatorial
3.
Mol Psychiatry ; 26(8): 4315-4330, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31857689

RESUMO

A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Substância Branca , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
4.
Hum Brain Mapp ; 42(14): 4568-4579, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34240783

RESUMO

Brain predicted age difference, or BrainPAD, compares chronological age to an age estimate derived by applying machine learning (ML) to MRI brain data. BrainPAD studies in youth have been relatively limited, often using only a single MRI modality or a single ML algorithm. Here, we use multimodal MRI with a stacked ensemble ML approach that iteratively applies several ML algorithms (AutoML). Eligible participants in the Healthy Brain Network (N = 489) were split into training and test sets. Morphometry estimates, white matter connectomes, or both were entered into AutoML to develop BrainPAD models. The best model was then applied to a held-out evaluation dataset, and associations with psychometrics were estimated. Models using morphometry and connectomes together had a mean absolute error of 1.18 years, outperforming models using a single MRI modality. Lower BrainPAD values were associated with more symptoms on the CBCL (pcorr  = .012) and lower functioning on the Children's Global Assessment Scale (pcorr  = .012). Higher BrainPAD values were associated with better performance on the Flanker task (pcorr  = .008). Brain age prediction was more accurate using ComBat-harmonized brain data (MAE = 0.26). Associations with psychometric measures remained consistent after ComBat harmonization, though only the association with CGAS reached statistical significance in the reduced sample. Our findings suggest that BrainPAD scores derived from unharmonized multimodal MRI data using an ensemble ML approach may offer a clinically relevant indicator of psychiatric and cognitive functioning in youth.


Assuntos
Sintomas Comportamentais/fisiopatologia , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/anatomia & histologia , Desenvolvimento Humano/fisiologia , Aprendizado de Máquina , Rede Nervosa/anatomia & histologia , Substância Branca/anatomia & histologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Masculino , Modelos Teóricos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Psicometria , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
5.
J Child Psychol Psychiatry ; 61(12): 1299-1308, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31889307

RESUMO

BACKGROUND: Cognitive behavioral therapy (CBT) is an effective, first-line treatment for pediatric obsessive-compulsive disorder (OCD). While neural predictors of treatment outcomes have been identified in adults with OCD, robust predictors are lacking for pediatric patients. Herein, we sought to identify brain structural markers of CBT response in youth with OCD. METHODS: Twenty-eight children/adolescents with OCD and 27 matched healthy participants (7- to 18-year-olds, M = 11.71 years, SD = 3.29) completed high-resolution structural and diffusion MRI (all unmedicated at time of scanning). Patients with OCD then completed 12-16 sessions of CBT. Subcortical volume and cortical thickness were estimated using FreeSurfer. Structural connectivity (streamline counts) was estimated using MRtrix. RESULTS: Thinner cortex in nine frontoparietal regions significantly predicted improvement in Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) scores (all ts > 3.4, FDR-corrected ps < .05). These included middle and superior frontal, angular, lingual, precentral, superior temporal, and supramarginal gyri (SMG). Vertex-wise analyses confirmed a significant left SMG cluster, showing large effect size (Cohen's d = 1.42) with 72.22% specificity and 90.00% sensitivity in predicting CBT response. Ten structural connections between cingulo-opercular regions exhibited fewer streamline counts in OCD (all ts > 3.12, Cohen's ds > 0.92) compared with healthy participants. These connections predicted post-treatment CY-BOCS scores, beyond pretreatment severity and demographics, though not above and beyond cortical thickness. CONCLUSIONS: The current study identified group differences in structural connectivity (reduced among cingulo-opercular regions) and cortical thickness predictors of CBT response (thinner frontoparietal cortices) in unmedicated children/adolescents with OCD. These data suggest, for the first time, that cortical and white matter features of task control circuits may be useful in identifying which pediatric patients respond best to individual CBT.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Terapia Cognitivo-Comportamental , Transtorno Obsessivo-Compulsivo/metabolismo , Transtorno Obsessivo-Compulsivo/terapia , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Resultado do Tratamento
6.
Cereb Cortex ; 28(6): 1911-1921, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444137

RESUMO

Serotonergic neurotransmission, potentially through effects on the brain's default mode network (DMN), may regulate aspects of attention including impulse control. Indeed, genetic variants of the serotonin transporter (5-HTT) have been implicated in impulsivity and related psychopathology. Yet it remains unclear the mechanism by which the 5-HTT genetic variants contribute to individual variability in impulse control. Here, we tested whether DMN connectivity mediates an association between the 5-HTT genetic variants and impulsivity. Participants (N = 92) were from a family cohort study of depression in which we have previously shown a broad distribution of 5-HTT variants. We genotyped for 5-HTTLPR and rs25531 (stratified by transcriptional efficiency: 8 low/low, 53 low/high, and 31 high/high), estimated DMN structural connectivity using diffusion probabilistic tractography, and assessed behavioral measures of impulsivity (from 12 low/low, 48 low/high, and 31 high/high) using the Continuous Performance Task. We found that low transcriptional efficiency genotypes were associated with decreased connection strength between the posterior DMN and the superior frontal gyrus (SFG). Path modeling demonstrated that decreased DMN-SFG connectivity mediated the association between low-efficiency genotypes and increased impulsivity. Taken together, this study suggests a gene-brain-behavior pathway that perhaps underlies the role of the serotonergic neuromodulation in impulse control.


Assuntos
Encéfalo/fisiologia , Comportamento Impulsivo/fisiologia , Vias Neurais/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Depressão/genética , Imagem de Tensor de Difusão , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Neurosci ; 37(16): 4280-4288, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28320844

RESUMO

Obstructive sleep apnea syndrome (OSAS) is associated with intermittent hypoxia and sleep loss. In children, impairments of cognitive function are important manifestations, but the underlying pathology is unknown. We hypothesized that OSAS would affect the dentate gyrus, a hippocampal subdivision essential to neurogenesis and cognition, and that this impact would further affect cognitive function in children. In children with OSAS (n = 11) and control subjects (n = 12; age and sex matched), we performed diffusion tensor imaging and structural MRI, polysomnography, and neuropsychological assessments. We found that OSAS was associated with decreased mean diffusivity of the left dentate gyrus (p = 0.002; false discovery rate corrected; adjusting for sex, age, and body mass index), showing a large effect size (partial η2 = 0.491), but not with any other structural measures across the brain. Decreased dentate gyrus mean diffusivity correlated with a higher apnea hypopnea index (Spearman's r = -0.50, p = 0.008) and a greater arousal index (r = -0.44, p = 0.017). OSAS did not significantly affect neuropsychological measures (p values >0.5); however, a lower verbal learning score correlated with lower dentate gyrus mean diffusivity (r = 0.54, p = 0.004). Path analysis demonstrated that dentate gyrus mean diffusivity mediates the impact of OSAS on verbal learning capacity. Finally, the diagnostic accuracy of a regression model based on dentate gyrus mean diffusivity reached 85.8% (cross validated). This study demonstrates a likely pathway of effects of OSAS on neurocognitive function in children, as well as potential utility of the dentate gyrus mean diffusivity as an early marker of brain pathology in children with OSAS.SIGNIFICANCE STATEMENT In this study we investigate the relationships between dentate gyrus structure, hippocampus-dependent cognition, and obstructive sleep apnea syndrome (OSAS). We demonstrate lower mean diffusivity of the dentate gyrus in children with OSAS, which correlates with a lower verbal learning and memory score. This study provides new evidence of disrupted microstructure of the dentate gyrus in children with OSAS that may help explain some of the neurocognitive deficits described in these children.


Assuntos
Giro Denteado/fisiologia , Memória , Apneia Obstrutiva do Sono/fisiopatologia , Aprendizagem Verbal , Adolescente , Estudos de Casos e Controles , Giro Denteado/diagnóstico por imagem , Giro Denteado/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Apneia Obstrutiva do Sono/diagnóstico por imagem
9.
J Neurosci ; 36(17): 4708-18, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122030

RESUMO

UNLABELLED: Clinical anxiety is associated with generalization of conditioned fear, in which innocuous stimuli elicit alarm. Using Pavlovian fear conditioning (electric shock), we quantify generalization as the degree to which subjects' neurobiological responses track perceptual similarity gradients to a conditioned stimulus. Previous studies show that the ventromedial prefrontal cortex (vmPFC) inversely and ventral tegmental area directly track the gradient of perceptual similarity to the conditioned stimulus in healthy individuals, whereas clinically anxious individuals fail to discriminate. Here, we extend this work by identifying specific functional roles within the prefrontal-limbic circuit. We analyzed fMRI time-series acquired from 57 human subjects during a fear generalization task using entropic measures of circuit-wide regulation and feedback (power spectrum scale invariance/autocorrelation), in combination with structural (diffusion MRI-probabilistic tractography) and functional (stochastic dynamic causal modeling) measures of prefrontal-limbic connectivity within the circuit. Group comparison and correlations with anxiety severity across 57 subjects revealed dysregulatory dynamic signatures within the inferior frontal gyrus (IFG), which our prior work has linked to impaired feedback within the circuit. Bayesian model selection then identified a fully connected prefrontal-limbic model comprising the IFG, vmPFC, and amygdala. Dysregulatory IFG dynamics were associated with weaker reciprocal excitatory connectivity between the IFG and the vmPFC. The vmPFC exhibited inhibitory influence on the amygdala. Our current results, combined with our previous work across a threat-perception spectrum of 137 subjects and a meta-analysis of 366 fMRI studies, dissociate distinct roles for three prefrontal-limbic regions, wherein the IFG provides evaluation of stimulus meaning, which then informs the vmPFC in inhibiting the amygdala. SIGNIFICANCE STATEMENT: Affective neuroscience has generally treated prefrontal regions (orbitofrontal cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex) equivalently as inhibitory components of the prefrontal-limbic system. Yet research across the anxiety spectrum suggests that the inferior frontal gyrus may have a more complex role in emotion regulation, as this region shows abnormal function in disorders of both hyperarousal and hypoarousal. Using entropic measures of circuit-wide regulation and feedback, in combination with measures of structural and functional connectivity, we dissociate distinct roles for three prefrontal-limbic regions, wherein the inferior frontal gyrus provides evaluation of stimulus meaning, which then informs the ventromedial prefrontal cortex in inhibiting the amygdala. This reconfiguration coheres with studies of conceptual disambiguation also implicating the inferior frontal gyrus.


Assuntos
Tonsila do Cerebelo/fisiologia , Transtornos de Ansiedade/fisiopatologia , Retroalimentação , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico , Imagem de Tensor de Difusão , Emoções/fisiologia , Medo/fisiologia , Feminino , Humanos , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética , Modelos Estatísticos
10.
Hippocampus ; 26(5): 545-53, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26743454

RESUMO

Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression.


Assuntos
Ansiedade/epidemiologia , Ansiedade/patologia , Depressão/epidemiologia , Depressão/patologia , Hipocampo/patologia , Aprendizagem por Associação/fisiologia , Comorbidade , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Escalas de Graduação Psiquiátrica , Autorrelato , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Adulto Jovem
11.
Hum Brain Mapp ; 37(11): 3835-3846, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27273474

RESUMO

Anorexia nervosa (AN) is a debilitating illness and existing interventions are only modestly effective. This study aimed to determine whether AN pathophysiology is associated with altered connections within fronto-accumbal circuitry subserving reward processing. Diffusion and resting-state functional MRI scans were collected in female inpatients with AN (n = 22) and healthy controls (HC; n = 18) between the ages of 16 and 25 years. Individuals with AN were scanned during the acute, underweight phase of the illness and again following inpatient weight restoration. HC were scanned twice over the same timeframe. Based on univariate and multivariate analyses of fronto-accumbal circuitry, underweight individuals with AN were found to have increased structural connectivity (diffusion probabilistic tractography), increased white matter anisotropy (tract-based spatial statistics), increased functional connectivity (seed-based correlation in resting-state fMRI), and altered effective connectivity (spectral dynamic causal modeling). Following weight restoration, fronto-accumbal structural connectivity continued to be abnormally increased bilaterally with large (partial η2 = 0.387; right NAcc-OFC) and moderate (partial η2 = 0.197; left NAcc-OFC) effect sizes. Increased structural connectivity within fronto-accumbal circuitry in the underweight state correlated with severity of eating disorder symptoms. Taken together, the findings from this longitudinal, multimodal neuroimaging study offer converging evidence of atypical fronto-accumbal circuitry in AN. Hum Brain Mapp 37:3835-3846, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anorexia Nervosa/diagnóstico por imagem , Anorexia Nervosa/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Recompensa , Adolescente , Adulto , Anorexia Nervosa/terapia , Feminino , Hospitalização , Humanos , Pacientes Internados , Estudos Longitudinais , Imageamento por Ressonância Magnética , Imagem Multimodal , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Descanso , Resultado do Tratamento , Aumento de Peso , Adulto Jovem
12.
J Neurosci ; 34(11): 4043-53, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623781

RESUMO

The ventromedial prefrontal cortex (vmPFC) plays a critical role in a number of evaluative processes, including risk assessment. Impaired discrimination between threat and safety is considered a hallmark of clinical anxiety. Here, we investigated the circuit-wide structural and functional mechanisms underlying vmPFC threat-safety assessment in humans. We tested patients with generalized anxiety disorder (GAD; n = 32, female) and healthy controls (n = 25, age-matched female) on a task that assessed the generalization of conditioned threat during fMRI scanning. The task consisted of seven rectangles of graded widths presented on a screen; only the midsize one was paired with mild electric shock [conditioned stimulus (CS)], while the others, safety cues, systematically varied in width by ±20, 40, and 60% [generalization stimuli (GS)] compared with the CS. We derived an index reflecting vmPFC functioning from the BOLD reactivity on a continuum of threat (CS) to safety (GS least similar to CS); patients with GAD showed less discrimination between threat and safety cues, compared with healthy controls (Greenberg et al., 2013b). Using structural, functional (i.e., resting-state), and diffusion MRI, we measured vmPFC thickness, vmPFC functional connectivity, and vmPFC structural connectivity within the corticolimbic systems. The results demonstrate that all three factors predict individual variability of vmPFC threat assessment in an independent fashion. Moreover, these neural features are also linked to GAD, most likely via an vmPFC fear generalization. Our results strongly suggest that vmPFC threat processing is closely associated with broader corticolimbic circuit anomalies, which may synergistically contribute to clinical anxiety.


Assuntos
Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/fisiopatologia , Medo/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/citologia , Adolescente , Adulto , Mapeamento Encefálico , Condicionamento Psicológico/fisiologia , Imagem de Tensor de Difusão , Feminino , Generalização Psicológica/fisiologia , Humanos , Modelos Logísticos , Imageamento por Ressonância Magnética , Modelos Neurológicos , Análise Multivariada , Adulto Jovem
13.
J Neurosci ; 34(17): 5855-60, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760845

RESUMO

The ventral tegmental area (VTA) has been primarily implicated in reward-motivated behavior. Recently, aberrant dopaminergic VTA signaling has also been implicated in anxiety-like behaviors in animal models. These findings, however, have yet to be extended to anxiety in humans. Here we hypothesized that clinical anxiety is linked to dysfunction of the mesocorticolimbic circuit during threat processing in humans; specifically, excessive or dysregulated activity of the mesocorticolimbic aversion circuit may be etiologically related to errors in distinguishing cues of threat versus safety, also known as "overgeneralization of fear." To test this, we recruited 32 females with generalized anxiety disorder and 25 age-matched healthy control females. We measured brain activity using fMRI while participants underwent a fear generalization task consisting of pseudo-randomly presented rectangles with systematically varying widths. A mid-sized rectangle served as a conditioned stimulus (CS; 50% electric shock probability) and rectangles with widths of CS ±20%, ±40%, and ±60% served as generalization stimuli (GS; never paired with electric shock). Healthy controls showed VTA reactivity proportional to the cue's perceptual similarity to CS (threat). In contrast, patients with generalized anxiety disorder showed heightened and less discriminating VTA reactivity to GS, a feature that was positively correlated with trait anxiety, as well as increased mesocortical and decreased mesohippocampal coupling. Our results suggest that the human VTA and the mesocorticolimbic system play a crucial role in threat processing, and that abnormalities in this system are implicated in maladaptive threat processing in clinical anxiety.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Rede Nervosa/fisiopatologia , Área Tegmentar Ventral/fisiopatologia , Adolescente , Adulto , Ansiedade/fisiopatologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética
14.
Cereb Cortex ; 24(9): 2249-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23585520

RESUMO

Cognitive processing biases, such as increased attention to threat, are gaining recognition as causal factors in anxiety. Yet, little is known about the anatomical pathway by which threat biases cognition and how genetic factors might influence the integrity of this pathway, and thus, behavior. For 40 normative adults, we reconstructed the entire amygdalo-prefrontal white matter tract (uncinate fasciculus) using diffusion tensor weighted MRI and probabilistic tractography to test the hypothesis that greater fiber integrity correlates with greater nonconscious attention bias to threat as measured by a backward masked dot-probe task. We used path analysis to investigate the relationship between brain-derived nerve growth factor genotype, uncinate fasciculus integrity, and attention bias behavior. Greater structural integrity of the amygdalo-prefrontal tract correlates with facilitated attention bias to nonconscious threat. Genetic variability associated with brain-derived nerve growth factor appears to influence the microstructure of this pathway and, in turn, attention bias to nonconscious threat. These results suggest that the integrity of amygdalo-prefrontal projections underlie nonconscious attention bias to threat and mediate genetic influence on attention bias behavior. Prefrontal cognition and attentional processing in high bias individuals appear to be heavily influenced by nonconscious threat signals relayed via the uncinate fasciculus.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Atenção , Fator Neurotrófico Derivado do Encéfalo/genética , Emoções , Córtex Pré-Frontal/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Técnicas de Genotipagem , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Masculino , Testes Neuropsicológicos , Polimorfismo Genético , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto Jovem
15.
Neuroimage ; 85 Pt 1: 345-53, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863519

RESUMO

Near infrared spectroscopy (NIRS) is an emerging imaging technique that is relatively inexpensive, portable, and particularly well suited for collecting data in ecological settings. Therefore, it holds promise as a potential neurodiagnostic for young children. We set out to explore whether NIRS could be utilized in assessing the risk of developmental psychopathology in young children. A growing body of work indicates that temperament at young age is associated with vulnerability to psychopathology later on in life. In particular, it has been shown that low effortful control (EC), which includes the focusing and shifting of attention, inhibitory control, perceptual sensitivity, and a low threshold for pleasure, is linked to conditions such as anxiety, depression and attention deficit hyperactivity disorder (ADHD). Physiologically, EC has been linked to a control network spanning among other sites the prefrontal cortex. Several psychopathologies, such as depression and ADHD, have been shown to result in compromised small-world network properties. Therefore we set out to explore the relationship between EC and the small-world properties of PFC using NIRS. NIRS data were collected from 44 toddlers, ages 3-5, while watching naturalistic stimuli (movie clips). Derived complex network measures were then correlated to EC as derived from the Children's Behavior Questionnaire (CBQ). We found that reduced levels of EC were associated with compromised small-world properties of the prefrontal network. Our results suggest that the longitudinal NIRS studies of complex network properties in young children hold promise in furthering our understanding of developmental psychopathology.


Assuntos
Neuroimagem Funcional/métodos , Transtornos Mentais/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Psicopatologia/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Comportamento Infantil , Pré-Escolar , Emoções , Movimentos Oculares , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Transtornos Mentais/psicologia , Filmes Cinematográficos , Rede Nervosa/patologia , Estimulação Luminosa , Córtex Pré-Frontal/patologia , Medição de Risco , Temperamento
16.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826224

RESUMO

The human brain undergoes structural and functional changes during childhood, a critical period in cognitive and behavioral development. Understanding the genetic architecture of the brain development in children can offer valuable insights into the development of the brain, cognition, and behaviors. Here, we integrated brain imaging-genetic-phenotype data from over 8,600 preadolescent children of diverse ethnic backgrounds using multivariate statistical techniques. We found a low-to-moderate level of SNP-based heritability in most IDPs, which is lower compared to the adult brain. Using sparse generalized canonical correlation analysis (SGCCA), we identified several covariation patterns among genome-wide polygenic scores (GPSs) of 29 traits, 7 different modalities of brain imaging-derived phenotypes (IDPs), and 266 cognitive and psychological phenotype data. In structural MRI, significant positive associations were observed between total grey matter volume, left ventral diencephalon volume, surface area of right accumbens and the GPSs of cognition-related traits. Conversely, negative associations were found with the GPSs of ADHD, depression and neuroticism. Additionally, we identified a significant positive association between educational attainment GPS and regional brain activation during the N-back task. The BMI GPS showed a positive association with fractional anisotropy (FA) of connectivity between the cerebellum cortex and amygdala in diffusion MRI, while the GPSs for educational attainment and cannabis use were negatively associated with the same IDPs. Our GPS-based prediction models revealed substantial genetic contributions to cognitive variability, while the genetic basis for many mental and behavioral phenotypes remained elusive. This study delivers a comprehensive map of the relationships between genetic profiles, neuroanatomical diversity, and the spectrum of cognitive and behavioral traits in preadolescence.

17.
Heliyon ; 10(1): e23345, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187352

RESUMO

The enduring influence of early life stress (ELS) on brain and cognitive development has been widely acknowledged, yet the precise mechanisms underlying this association remain elusive. We hypothesize that ELS might disrupt the genome-wide influence on brain morphology and connectivity development, consequently exerting a detrimental impact on children's cognitive ability. We analyzed the multimodal data of DNA genotypes, brain imaging (structural and diffusion MRI), and neurocognitive battery (NIH Toolbox) of 4276 children (ages 9-10 years, European ancestry) from the Adolescent Brain Cognitive Development (ABCD) study. The genome-wide influence on cognitive function was estimated using the polygenic score (GPS). By using brain morphometry and tractography, we identified the brain correlates of the cognition GPSs. Statistical analyses revealed relationships for the gene-brain-cognition pathway. The brain structural variance significantly mediated the genetic influence on cognition (indirect effect = 0.016, PFDR < 0.001). Of note, this gene-brain relationship was significantly modulated by abuse, resulting in diminished cognitive capacity (Index of Moderated Mediation = -0.007; 95 % CI = -0.012 âˆ¼ -0.002). Our results support a novel gene-brain-cognition model likely elucidating the long-lasting negative impact of ELS on children's cognitive development.

18.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441539

RESUMO

In children, psychotic-like experiences (PLEs) are related to risk of psychosis, schizophrenia, and other mental disorders. Maladaptive cognitive functioning, influenced by genetic and environmental factors, is hypothesized to mediate the relationship between these factors and childhood PLEs. Using large-scale longitudinal data, we tested the relationships of genetic and environmental factors (such as familial and neighborhood environment) with cognitive intelligence and their relationships with current and future PLEs in children. We leveraged large-scale multimodal data of 6,602 children from the Adolescent Brain and Cognitive Development Study. Linear mixed model and a novel structural equation modeling (SEM) method that allows estimation of both components and factors were used to estimate the joint effects of cognitive phenotypes polygenic scores (PGSs), familial and neighborhood socioeconomic status (SES), and supportive environment on NIH Toolbox cognitive intelligence and PLEs. We adjusted for ethnicity (genetically defined), schizophrenia PGS, and additionally unobserved confounders (using computational confound modeling). Our findings indicate that lower cognitive intelligence and higher PLEs are significantly associated with lower PGSs for cognitive phenotypes, lower familial SES, lower neighborhood SES, and less supportive environments. Specifically, cognitive intelligence mediates the effects of these factors on PLEs, with supportive parenting and positive school environments showing the strongest impact on reducing PLEs. This study underscores the influence of genetic and environmental factors on PLEs through their effects on cognitive intelligence. Our findings have policy implications in that improving school and family environments and promoting local economic development may enhance cognitive and mental health in children.


Childhood is a critical period for brain development. Difficult experiences during this developmental phase may contribute to reduced intelligence and poorer mental health later in life. Genetics and environmental factors also play roles. For example, having family support or a higher family income has been linked to better brain health outcomes for children. Delusions or hallucinations, or other psychotic-like experiences during childhood, are linked with poor mental health later in life. Children who experience psychotic-like episodes between the ages of nine and eleven have a higher risk of developing schizophrenia or related conditions. Environmental circumstances during childhood also appear to play a crucial role in shaping the risk of schizophrenia or related conditions. Park, Lee et al. show that positive parenting and supportive school and neighborhood environments boost child intelligence and mental health. In the experiments, Park, Lee et al. analyzed data on 6,602 children to determine how genetics and environmental factors shaped their intelligence and mental health. The models show that children with higher intelligence have a lower risk of psychosis. Both genetics and supportive environments contribute to higher intelligence. Complex interactions between biology and social factors shape children's intelligence and mental health. Beneficial genetics and coming from a family with more financial resources are helpful. Yet, social environments, such as having parents who use positive child-rearing practices, or having supportive schools or neighborhoods, have protective effects that can offset other disadvantages. Policies that help parents, encourage supportive school environments, and strengthen neighborhoods may boost children's intelligence and mental health later in life.


Assuntos
Transtornos Mentais , Transtornos Psicóticos , Adolescente , Criança , Humanos , Transtornos Psicóticos/genética , Saúde Mental , Cognição , Inteligência/genética
19.
Biol Psychiatry ; 95(1): 27-36, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393047

RESUMO

BACKGROUND: Maternal stress (MS) is a well-documented risk factor for impaired emotional development in offspring. Rodent models implicate the dentate gyrus (DG) of the hippocampus in the effects of MS on offspring depressive-like behaviors, but mechanisms in humans remain unclear. Here, we tested whether MS was associated with depressive symptoms and DG micro- and macrostructural alterations in offspring across 2 independent cohorts. METHODS: We analyzed DG diffusion tensor imaging-derived mean diffusivity (DG-MD) and volume in a three-generation family risk for depression study (TGS; n = 69, mean age = 35.0 years) and in the Adolescent Brain Cognitive Development (ABCD) Study (n = 5196, mean age = 9.9 years) using generalized estimating equation models and mediation analysis. MS was assessed by the Parenting Stress Index (TGS) and a measure compiled from the Adult Response Survey from the ABCD Study. The Patient Health Questionnaire-9 and rumination scales (TGS) and the Child Behavior Checklist (ABCD Study) measured offspring depressive symptoms at follow-up. The Schedule for Affective Disorders and Schizophrenia-Lifetime interview was used to assign depression diagnoses. RESULTS: Across cohorts, MS was associated with future symptoms and higher DG-MD (indicating disrupted microstructure) in offspring. Higher DG-MD was associated with higher symptom scores measured 5 years (in the TGS) and 1 year (in the ABCD Study) after magnetic resonance imaging. In the ABCD Study, DG-MD was increased in high-MS offspring who had depressive symptoms at follow-up, but not in offspring who remained resilient or whose mother had low MS. CONCLUSIONS: Converging results across 2 independent samples extend previous rodent studies and suggest a role for the DG in exposure to MS and offspring depression.


Assuntos
Imagem de Tensor de Difusão , Mães , Adulto , Feminino , Criança , Adolescente , Humanos , Imagem de Tensor de Difusão/métodos , Mães/psicologia , Hipocampo , Imageamento por Ressonância Magnética , Giro Denteado , Depressão/etiologia
20.
Depress Anxiety ; 30(3): 242-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23139148

RESUMO

BACKGROUND: Fear generalization is thought to contribute to the development and maintenance of anxiety symptoms and accordingly has been the focus of recent research. Previously, we reported that in healthy individuals (N = 25) neural reactivity in the insula, anterior cingulate cortex (ACC), supplementary motor area (SMA), and caudate follow a generalization gradient with a peak response to a conditioned stimulus (CS) that declines with greater perceptual dissimilarity of generalization stimuli (GS) to the CS. In contrast, reactivity in the ventromedial prefrontal cortex (vmPFC), a region linked to fear inhibition, showed an opposite response pattern. The aim of the current study was to examine whether neural responses to fear generalization differ in generalized anxiety disorder (GAD). A second aim was to examine connectivity of primary regions engaged by the generalization task in the GAD group versus healthy group, using psychophysiological interaction analysis. METHODS: Thirty-two women diagnosed with GAD were scanned using the same generalization task as our healthy group. RESULTS: Individuals with GAD exhibited a less discriminant vmPFC response pattern suggestive of deficient recruitment of vmPFC during fear inhibition. Across participants, there was enhanced anterior insula (aINS) coupling with the posterior insula, ACC, SMA, and amygdala during presentation of the CS, consistent with a modulatory role for the aINS in the execution of fear responses. CONCLUSIONS: These findings suggest that deficits in fear regulation, rather than in the excitatory response itself, are more critical to the pathophysiology of GAD in the context of fear generalization.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Córtex Cerebral/fisiopatologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Tonsila do Cerebelo/fisiopatologia , Transtornos de Ansiedade/epidemiologia , Comorbidade , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Inibição Psicológica , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Pupila/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa