Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Theor Appl Genet ; 137(3): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386181

RESUMO

KEY MESSAGE: A new OrAnom1 gene introgressed in cultivated sunflower from wild Helianthus anomalus confers late post-attachment resistance to Orobanche cumana race G and maps to a target interval in Chromosome 4 where two receptor-like kinases (RLKs) have been identified in the H. anomalus genome as putative candidates. Sunflower broomrape is a parasitic weed that infects sunflower (Helianthus annuus L.) roots causing severe yield losses. Breeding for resistance is the most effective and sustainable control method. In this study, we report the identification, introgression, and genetic and physiological characterization of a new sunflower source of resistance to race G of broomrape developed from the wild annual sunflower H. anomalus (accession PI 468642). Crosses between PI 468642 and the susceptible line P21 were carried out, and the genetic study was conducted in BC1F1, BC1F2, and its derived BC1F3 populations. A BC1F5 germplasm named ANOM1 was developed through selection for race G resistance and resemblance to cultivated sunflower. The resistant trait showed monogenic and dominant inheritance. The gene, named OrAnom1, was mapped to Chromosome 4 within a 1.2 cM interval and co-segregated with 7 SNP markers. This interval corresponds to a 1.32 Mb region in the sunflower reference genome, housing a cluster of receptor-like kinase and receptor-like protein (RLK-RLP) genes. Notably, the analysis of the H. anomalus genome revealed the absence of RLPs in the OrAnom1 target region but featured two RLKs as possible OrAnom1 candidates. Rhizotron and histological studies showed that OrAnom1 determines a late post-attachment resistance mechanism. Broomrape can establish a vascular connection with the host, but parasite growth is stopped before tubercle development, showing phenolic compounds accumulation and tubercle necrosis. ANOM1 will contribute to broadening the genetic basis of broomrape resistance in the cultivated sunflower pool and to a better understanding of the molecular basis of the sunflower-broomrape interaction.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Melhoramento Vegetal , Necrose , Fenóis
2.
Theor Appl Genet ; 137(5): 103, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613680

RESUMO

KEY MESSAGE: The HaOr5 resistance gene is located in a large genomic insertion containing putative resistance genes and provides resistance to O. cumana, preventing successful connection to the sunflower root vascular system. Orobanche cumana (sunflower broomrape) is a parasitic plant that is part of the Orobanchaceae family and specifically infests sunflower crops. This weed is an obligate parasitic plant that does not carry out photosynthetic activity or develop roots and is fully dependent on its host for its development. It produces thousands of dust-like seeds per plant. It possesses a high spreading ability and has been shown to quickly overcome resistance genes successively introduced by selection in cultivated sunflower varieties. The first part of its life cycle occurs underground. The connection to the sunflower vascular system is essential for parasitic plant survival and development. The HaOr5 gene provides resistance to sunflower broomrape race E by preventing the connection of O. cumana to the root vascular system. We mapped a single position of the HaOr5 gene by quantitative trait locus mapping using two segregating populations. The same location of the HaOr5 gene was identified by genome-wide association. Using a large population of thousands of F2 plants, we restricted the location of the HaOr5 gene to a genomic region of 193 kb. By sequencing the whole genome of the resistant line harboring the major resistance gene HaOr5, we identified a large insertion of a complex genomic region containing a cluster of putative resistance genes.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Orobanche/genética , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Genômica
4.
New Phytol ; 219(3): 1018-1030, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790172

RESUMO

Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.


Assuntos
Frankia/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Vegetais/microbiologia , Rhamnaceae/genética , Rhamnaceae/microbiologia , Subtilisinas/genética , Contagem de Colônia Microbiana , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia , Subtilisinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(31): 9781-6, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26199419

RESUMO

Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca(2+) concentration (Ca(2+) spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca(2+) spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume-rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca(2+) spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca(2+) spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca(2+) spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca(2+) spiking in this heterologous system.


Assuntos
Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Transdução de Sinais , Simbiose , Arabidopsis/genética , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Ácido Mevalônico/farmacologia , Mutação/genética , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Simbiose/genética
6.
New Phytol ; 214(2): 533-538, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27918078

RESUMO

Contents 533 I. 533 II. 534 III. 536 IV. 536 537 References 537 SUMMARY: Root endosymbioses are beneficial associations formed between terrestrial plants and either bacterial or fungal micro-organisms. A common feature of these intracellular symbioses is the requirement for mutual recognition between the two partners before host-regulated microbial entry. As part of this molecular dialogue, symbiosis-specific microbial factors set in motion a highly conserved plant signal transduction pathway, of which a central component is the activation of sustained nuclear Ca2+ oscillations in target cells of the host epidermis. Here, we focus on recent findings concerning this crucial Ca2+ -dependent signalling step for endosymbiotic associations involving either arbuscular mycorrhizal fungi or nitrogen-fixing Frankia actinomycetes, and in particular how this knowledge is contributing to the identification of the respective microbial factors.


Assuntos
Actinobacteria/metabolismo , Sinalização do Cálcio , Núcleo Celular/metabolismo , Micorrizas/metabolismo , Transdução de Sinais , Simbiose
7.
New Phytol ; 214(4): 1440-1446, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28369864

RESUMO

The rice lysin-motif (LysM) receptor-like kinase OsCERK1 is now known to have a dual role in both pathogenic and symbiotic interactions. Following the recent discovery that the Oscerk1 mutant is unable to host arbuscular mycorrhizal (AM) fungi, we have examined whether OsCERK1 is directly involved in the perception of the short-chain chitin oligomers (Myc-COs) identified in AM fungal exudates and shown to activate nuclear calcium (Ca2+ ) spiking in the rice root epidermis. An Oscerk1 knockout mutant expressing the cameleon NLS-YC2.60 was used to monitor nuclear Ca2+ signaling following root treatment with either crude fungal exudates or purified Myc-COs. Compared with wild-type rice, Ca2+ spiking responses to AM fungal elicitation were absent in root atrichoblasts of the Oscerk1 mutant. By contrast, rice lines mutated in OsCEBiP, encoding the LysM receptor-like protein which associates with OsCERK1 to perceive chitin elicitors of the host immune defense pathway, responded positively to Myc-COs. These findings provide direct evidence that the bi-functional OsCERK1 plays a central role in perceiving short-chain Myc-CO signals and activating the downstream conserved symbiotic signal transduction pathway.


Assuntos
Quitina/metabolismo , Micorrizas/metabolismo , Oryza/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cálcio/metabolismo , Técnicas de Inativação de Genes , Mutação , Micorrizas/fisiologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
8.
New Phytol ; 209(1): 86-93, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26484850

RESUMO

Although it is now well-established that decorated lipo-chitooligosaccharide Nod factors are the key rhizobial signals which initiate infection/nodulation in host legume species, the identity of the equivalent microbial signaling molecules in the Frankia/actinorhizal association remains elusive. With the objective of identifying Frankia symbiotic factors we present a novel approach based on both molecular and cellular pre-infection reporters expressed in the model actinorhizal species Casuarina glauca. By introducing the nuclear-localized cameleon Nup-YC2.1 into Casuarina glauca we show that cell-free culture supernatants of the compatible Frankia CcI3 strain are able to elicit sustained high frequency Ca(2+) spiking in host root hairs. Furthermore, an excellent correlation exists between the triggering of nuclear Ca(2+) spiking and the transcriptional activation of the ProCgNIN:GFP reporter as a function of the Frankia strain tested. These two pre-infection symbiotic responses have been used in combination to show that the signal molecules present in the Frankia CcI3 supernatant are hydrophilic, of low molecular weight and resistant to chitinase degradation. In conclusion, the biologically active symbiotic signals secreted by Frankia appear to be chemically distinct from the currently known chitin-based rhizobial/arbuscular mycorrhizal signaling molecules. Convenient bioassays in Casuarina glauca are now available for their full characterization.


Assuntos
Proteínas de Bactérias/genética , Cálcio/metabolismo , Frankia/fisiologia , Regulação da Expressão Gênica de Plantas , Magnoliopsida/microbiologia , Micorrizas/fisiologia , Proteínas de Bactérias/metabolismo , Quitinases/metabolismo , Frankia/genética , Genes Reporter , Interações Hidrofóbicas e Hidrofílicas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simbiose
9.
Plant Physiol ; 167(4): 1233-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659382

RESUMO

In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.


Assuntos
Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Biomarcadores , Parede Celular/metabolismo , Genes Reporter , Medicago truncatula/citologia , Medicago truncatula/genética , Medicago truncatula/fisiologia , Modelos Biológicos , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Simbiose
10.
Plant Cell ; 24(9): 3838-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23023168

RESUMO

Cytokinin regulates many aspects of plant development, and in legume crops, this phytohormone is necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. To identify direct links between cytokinins and nodule organogenesis, we determined a consensus sequence bound in vitro by a transcription factor (TF) acting in cytokinin signaling, the nodule-enhanced Medicago truncatula Mt RR1 response regulator (RR). Among genes rapidly regulated by cytokinins and containing this so-called RR binding site (RRBS) in their promoters, we found the nodulation-related Type-A RR Mt RR4 and the Nodulation Signaling Pathway 2 (NSP2) TF. Site-directed mutagenesis revealed that RRBS cis-elements in the RR4 and NSP2 promoters are essential for expression during nodule development and for cytokinin induction. Furthermore, a microRNA targeting NSP2 (miR171 h) is also rapidly induced by cytokinins and then shows an expression pattern anticorrelated with NSP2. Other primary targets regulated by cytokinins depending on the Cytokinin Response1 (CRE1) receptor were a cytokinin oxidase/dehydrogenase (CKX1) and a basic Helix-Loop-Helix TF (bHLH476). RNA interference constructs as well as insertion of a Tnt1 retrotransposon in the bHLH gene led to reduced nodulation. Hence, we identified two TFs, NSP2 and bHLH476, as direct cytokinin targets acting at the convergence of phytohormonal and symbiotic cues.


Assuntos
Citocininas/farmacologia , Medicago truncatula/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Nodulação/genética , Sinorhizobium meliloti/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência Consenso , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/microbiologia , MicroRNAs/genética , Dados de Sequência Molecular , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Alinhamento de Sequência , Transdução de Sinais , Simbiose , Fatores de Transcrição/genética , Transcriptoma
11.
Plant J ; 69(5): 822-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22035171

RESUMO

Ca(2+) spiking is a central component of a common signaling pathway that is activated in the host epidermis during initial recognition of endosymbiotic microbes. However, it is not known to what extent Ca(2+) signaling also plays a role during subsequent root colonization involving apoplastic transcellular infection. Live-tissue imaging using calcium cameleon reporters expressed in Medicago truncatula roots has revealed that distinct Ca(2+) oscillatory profiles correlate with specific stages of transcellular cortical infection by both rhizobia and arbuscular mycorrhizal fungi. Outer cortical cells exhibit low-frequency Ca(2+) spiking during the extensive intracellular remodeling that precedes infection. This appears to be a prerequisite for the formation of either pre-infection threads or the pre-penetration apparatus, both of which are fully reversible processes. A transition from low- to high-frequency spiking is concomitant with the initial stages of apoplastic cell entry by both microbes. This high-frequency spiking is of limited duration in the case of rhizobial infection and is completely switched off by the time transcellular infection by both microsymbionts is completed. The Ca(2+) spiking profiles associated with both rhizobial and arbuscular mycorrhizal cell entry are remarkably similar in terms of periodicity, suggesting that microbe specificity is unlikely to be encoded by the Ca(2+) signature during this particular stage of host infection in the outer cortex. Together, these findings lead to the proposal that tightly regulated Ca(2+) -mediated signal transduction is a key player in reprogramming root cell development at the critical stage of commitment to endosymbiotic infection.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Medicago truncatula/microbiologia , Raízes de Plantas/fisiologia , Simbiose/fisiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia
12.
New Phytol ; 198(1): 190-202, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384011

RESUMO

The primary objective of this study was to identify the molecular signals present in arbuscular mycorrhizal (AM) germinated spore exudates (GSEs) responsible for activating nuclear Ca(2+) spiking in the Medicago truncatula root epidermis. Medicago truncatula root organ cultures (ROCs) expressing a nuclear-localized cameleon reporter were used as a bioassay to detect AM-associated Ca(2+) spiking responses and LC-MS to characterize targeted molecules in GSEs. This approach has revealed that short-chain chitin oligomers (COs) can mimic AM GSE-elicited Ca(2+) spiking, with maximum activity observed for CO4 and CO5. This spiking response is dependent on genes of the common SYM signalling pathway (DMI1/DMI2) but not on NFP, the putative Sinorhizobium meliloti Nod factor receptor. A major increase in the CO4/5 concentration in fungal exudates is observed when Rhizophagus irregularis spores are germinated in the presence of the synthetic strigolactone analogue GR24. By comparison with COs, both sulphated and nonsulphated Myc lipochito-oligosaccharides (LCOs) are less efficient elicitors of Ca(2+) spiking in M. truncatula ROCs. We propose that short-chain COs secreted by AM fungi are part of a molecular exchange with the host plant and that their perception in the epidermis leads to the activation of a SYM-dependent signalling pathway involved in the initial stages of fungal root colonization.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/metabolismo , Quitina/farmacologia , Lactonas/farmacologia , Medicago truncatula/microbiologia , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Bactérias/metabolismo , Núcleo Celular/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/metabolismo , Mutação/genética , Micorrizas/efeitos dos fármacos , Oligossacarídeos/farmacologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/microbiologia , Raízes de Plantas/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
13.
Front Plant Sci ; 13: 1038684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340383

RESUMO

Orobanche cumana Wall., sunflower broomrape, is one of the major pests for the sunflower crop. Breeding for resistant varieties in sunflower has been the most efficient method to control this parasitic weed. However, more virulent broomrape populations continuously emerge by overcoming genetic resistance. It is thus essential to identify new broomrape resistances acting at various stages of the interaction and combine them to improve resistance durability. In this study, 71 wild sunflowers and wild relatives accessions from 16 Helianthus species were screened in pots for their resistance to broomrape at the late emergence stage. From this initial screen, 18 accessions from 9 species showing resistance, were phenotyped at early stages of the interaction: the induction of broomrape seed germination by sunflower root exudates, the attachment to the host root and the development of tubercles in rhizotron assays. We showed that wild Helianthus accessions are an important source of resistance to the most virulent broomrape races, affecting various stages of the interaction: the inability to induce broomrape seed germination, the development of incompatible attachments or necrotic tubercles, and the arrest of emerged structure growth. Cytological studies of incompatible attachments showed that several cellular mechanisms were shared among resistant Helianthus species.

14.
Mol Plant Microbe Interact ; 24(11): 1333-44, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21787150

RESUMO

A successful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as new organelle-like structures, called symbiosomes, inside the cells of their legume hosts. Two legume mutants that are most strongly impaired in their ability to form symbiosomes are sym1/TE7 in Medicago truncatula and sym33 in Pisum sativum. We have cloned both MtSYM1 and PsSYM33 and show that both encode the recently identified interacting protein of DMI3 (IPD3), an ortholog of Lotus japonicus (Lotus) CYCLOPS. IPD3 and CYCLOPS were shown to interact with DMI3/CCaMK, which encodes a calcium- and calmodulin-dependent kinase that is an essential component of the common symbiotic signaling pathway for both rhizobial and mycorrhizal symbioses. Our data reveal a novel, key role for IPD3 in symbiosome formation and development. We show that MtIPD3 participates in but is not essential for infection thread formation and that MtIPD3 also affects DMI3-induced spontaneous nodule formation upstream of cytokinin signaling. Further, MtIPD3 appears to be required for the expression of a nodule-specific remorin, which controls proper infection thread growth and is essential for symbiosome formation.


Assuntos
Medicago/microbiologia , Fixação de Nitrogênio , Pisum sativum/microbiologia , Simbiose , Sequência de Bases , Núcleo Celular/metabolismo , Clonagem Molecular , Primers do DNA , Genes de Plantas , Medicago/genética , Medicago/fisiologia , Microscopia Confocal , Micorrizas/fisiologia , Pisum sativum/genética , Pisum sativum/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase
15.
New Phytol ; 189(1): 347-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20880223

RESUMO

• The aim of this study was to investigate Ca(2+) responses to endosymbiotic arbuscular mycorrhizal (AM) fungi in the host root epidermis following pre-infection hyphopodium formation in both legumes and nonlegumes, and to determine to what extent these responses could be mimicked by germinated fungal spore exudate. • Root organ cultures of both Medicago truncatula and Daucus carota, expressing the nuclear-localized cameleon reporter NupYC2.1, were used to monitor AM-elicited Ca(2+) responses in host root tissues. • Ca(2+) spiking was observed in cells contacted by AM hyphopodia for both hosts, with highest frequencies correlating with the epidermal nucleus positioned facing the fungal contact site. Treatment with AM spore exudate also elicited Ca(2+) spiking within the AM-responsive zone of the root and, in both cases, spiking was dependent on the M. truncatula common SYM genes DMI1/2, but not on the rhizobial Nod factor perception gene NFP. • These findings support the conclusion that AM fungal root penetration is preceded by a SYM pathway-dependent oscillatory Ca(2+) response, whose evolutionary origin predates the divergence between asterid and rosid clades. Our results further show that fungal symbiotic signals are already generated during spore germination, and that cameleon-expressing root organ cultures represent a novel AM-specific bio-assay for such signals.


Assuntos
Sinalização do Cálcio , Daucus carota/microbiologia , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Daucus carota/metabolismo , Medicago truncatula/metabolismo , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia
16.
Plant Physiol ; 151(3): 1197-206, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19700563

RESUMO

Lipochitooligosaccharide nodulation factors (NFs) secreted by endosymbiotic nitrogen-fixing rhizobia trigger Ca(2+) spiking in the cytoplasmic perinuclear region of host legume root hairs. To determine whether NFs also elicit Ca(2+) responses within the plant cell nucleus we have made use of a nucleoplasmin-tagged cameleon (NupYC2.1). Confocal microscopy using this nuclear-specific calcium reporter has revealed sustained and regular Ca(2+) spiking within the nuclear compartment of Medicago truncatula root hairs treated with Sinorhizobium meliloti NFs. Since the activation of Ca(2+) oscillations is blocked in M. truncatula nfp, dmi1, and dmi2 mutants, and unaltered in a dmi3 background, it is likely that intranuclear spiking lies on the established NF-dependent signal transduction pathway, leading to cytoplasmic calcium spiking. A semiautomated mathematical procedure has been developed to identify and analyze nuclear Ca(2+) spiking profiles, and has revealed high cell-to-cell variability in terms of both periodicity and spike duration. Time-lapse imaging of the cameleon Förster resonance energy transfer-based ratio has allowed us to visualize the nuclear spiking variability in situ and to demonstrate the absence of spiking synchrony between adjacent growing root hairs. Finally, spatio-temporal analysis of the asymmetric nuclear spike suggests that the initial rapid increase in Ca(2+) concentration occurs principally in the vicinity of the nuclear envelope. The discovery that rhizobial NF perception leads to the activation of cell-autonomous Ca(2+) oscillations on both sides of the nuclear envelope raises major questions about the respective roles of the cytoplasmic and nuclear compartments in transducing this key endosymbiotic signal.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Medicago truncatula/metabolismo , Nodulação , Raízes de Plantas/metabolismo , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Transferência Ressonante de Energia de Fluorescência , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/metabolismo , Medicago truncatula/genética , Microscopia Confocal , Nucleoplasminas/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
17.
Plant J ; 54(2): 335-47, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18208518

RESUMO

Medicago truncatula is a fast-emerging model for the study of legume functional biology. We used the tobacco retrotransposon Tnt1 to tag the Medicago genome and generated over 7600 independent lines representing an estimated 190,000 insertion events. Tnt1 inserted on average at 25 different locations per genome during tissue culture, and insertions were stable during subsequent generations in soil. Analysis of 2461 Tnt1 flanking sequence tags (FSTs) revealed that Tnt1 appears to prefer gene-rich regions. The proportion of Tnt1 insertion in coding sequences was 34.1%, compared to the expected 15.9% if random insertions were to occur. However, Tnt1 showed neither unique target site specificity nor strong insertion hot spots, although some genes were more frequently tagged than others. Forward-genetic screening of 3237 R(1) lines resulted in identification of visible mutant phenotypes in approximately 30% of the regenerated lines. Tagging efficiency appears to be high, as all of the 20 mutants examined so far were found to be tagged. Taking the properties of Tnt1 into account and assuming 1.7 kb for the average M. truncatula gene size, we estimate that approximately 14,000-16,000 lines would be sufficient for 90% gene tagging coverage in M. truncatula. This is in contrast to more than 500,000 lines required to achieve the same saturation level using T-DNA tagging. Our data demonstrate that Tnt1 is an efficient insertional mutagen in M. truncatula, and could be a primary choice for other plant species with large genomes.


Assuntos
Genes de Plantas/genética , Medicago truncatula/genética , Mutagênese Insercional/métodos , Retroelementos/genética , Medicago truncatula/crescimento & desenvolvimento , Fenótipo
18.
Plant Cell Rep ; 28(10): 1563-72, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19688215

RESUMO

Insertion mutant collections are powerful tools for genetic studies in plants. Although large-scale insertional mutagenesis using T-DNA is not feasible in legumes, the Tnt1 tobacco retrotransposon can be used as a very efficient mutagen in the Medicago truncatula R108 genotype. In this article, we show that Tnt1 can also be exploited to create insertional mutants via transformation and/or regeneration in the reference cultivar Jemalong. Tnt1 insertional mutagenesis in Jemalong following Agrobacterium tumefaciens-mediated transformation was found to be very efficient, with an average of greater than 15 insertions/line. In contrast, regeneration using low-copy transgenic starter lines resulted in a highly variable rate of new Tnt1 insertions. With the goal of increasing the number of additional Tnt1 insertions during regeneration of starter lines, we have compared the insertion frequencies for a number of different regeneration protocols. In addition, we have been able to show that sucrose-mediated osmotic shock preceding regeneration significantly increases the transposition frequency. Under optimal conditions, 95% of the regenerated Jemalong plants possess new insertions.


Assuntos
Medicago truncatula/genética , Mutagênese Insercional/métodos , Pressão Osmótica , Retroelementos , Agrobacterium tumefaciens/genética , Meios de Cultura , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regeneração , Sacarose/farmacologia , Transformação Genética
19.
PLoS One ; 14(10): e0223149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600251

RESUMO

Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.


Assuntos
Fagales/genética , Frankia/genética , Oligossacarídeos/genética , Simbiose/genética , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Fagales/crescimento & desenvolvimento , Fagales/microbiologia , Frankia/crescimento & desenvolvimento , Frankia/metabolismo , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Fixação de Nitrogênio/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Transdução de Sinais/genética
20.
Front Plant Sci ; 10: 1628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921269

RESUMO

Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes place inside root cortical cells that harbor an arbuscule: a highly branched intracellular fungal hypha enveloped by an extension of the host cell membrane-the perifungal membrane-which outlines a specialized symbiotic interface compartment. The perifungal membrane develops around each intracellular hypha as the symbiotic fungus proceeds across the root tissues; its biogenesis is the result of an extensive exocytic process and shows a few similarities with cell plate insertion which occurs at the end of somatic cytokinesis. Materials and Methods: We here analyzed the subcellular localization of a GFP fusion with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant clathrin-mediated endocytosis with a role in cell plate anchoring with the parental plasma membrane. Results: Our observations demonstrate that Daucus carota and Medicago truncatula root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong fluorescent green signal at sites of symbiotic interface construction, along recently formed perifungal membranes and at sites of cell-to-cell hyphal passage between adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma. Discussion: Our results strongly suggest that TPC-mediated endocytic processes are active during perifungal membrane interface biogenesis-alongside exocytic transport. This novel conclusion, which might be correlated to the accumulation of late endosomes in the vicinity of the developing interface, hints at the involvement of TPC-dependent membrane remodeling during the intracellular accommodation of AM fungi.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa